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ABSTRACT 
 
 
 

A logical function f is AND bi-decomposable if it can be written 

as , where X)()(),( 221121 XhXhXXf = 1 and X2 are disjoint. Such functions are important 

because they can be efficiently implemented. Also many benchmark functions are AND 

bi-decomposable. Surprisingly, the minimal sum of products (MSOP) of f is not always 

obtainable by finding the MSOP of h1 and h2 and applying the law of distributivity.  

However, a special class of functions called orthodox functions, introduced by 

Sasao and Butler [1], do have this property. This thesis focuses on orthodox functions, 

and the remaining non-orthodox functions. 

It is shown how to build up non-orthodox functions from orthodox functions on 

fewer variables. An algorithm is presented for generating families of non-orthodox 

functions. A test program is developed to test the results of the proposed algorithm and 

also other programs are developed to conduct experiments with both orthodox and non-

orthodox functions. Results are presented that represent the first steps toward completely 

characterizing bi-decomposable functions that can be efficiently implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 v



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 vi



TABLE OF CONTENTS 
 
 
 

I. INTRODUCTION AND BACKGROUND................................................................1 
A.  INTRODUCTION............................................................................................1 
B.  BACKGROUND ..............................................................................................3 

1.  Bi-decomposition..................................................................................4 
a.  Disjoint Bi-decomposition.........................................................5 
b. Non-disjoint Bi-decomposition.................................................6 
c.  Methods to Determine the Type of Disjoint Bi-

decomposition............................................................................7 
d.  Number of the Functions with Bi-decomposition Property ..12 

2. Espresso ..............................................................................................15 
a.  Keywords and Usage of Espresso ...........................................17 

II. NOTATION AND DEFINITIONS...........................................................................21 
A.   LITERAL........................................................................................................21 
B.  PRIME IMPLICANT (PI) ............................................................................21 
C. MINTERM AND MAXTERM .....................................................................22 
D. CUBE NOTATION........................................................................................22 
E. STRONG AND WEAK MINTERMS..........................................................23 
F. INDEPENDENT SET OF MINTERMS......................................................23 
G. DISTINGUISHED MINTERM ....................................................................24 
H. ISOP (IRREDUNDANT SUM OF PRODUCTS) .......................................25 
I. MSOP (MINIMUM SUM OF PRODUCTS)...............................................25 
J. SYMMETRIC FUNCTION..........................................................................25 
K. UNATE FUNCTION .....................................................................................25 
L. MAJORITY FUNCTION .............................................................................26 
M.  SELF DUAL FUNCTION.............................................................................27 
N. INCOMPLETELY AND COMPLETELY SPECIFIED FUNCTIONS...27 
O. NP-EQUIVALENT........................................................................................28 
P. CONCLUSIONS OF THE CHAPTER........................................................28 

III. ORTHODOX FUNCTIONS .....................................................................................29 
A.  DISJOINT COMPUTATION SCHEME HYPOTHESIS (DCSH)...........29 

1.  DCSH for f ∨ g....................................................................................30 
2.  DCSH for f  ^ g...................................................................................32 

B.  SAMPLE ORTHODOX FUNCTIONS........................................................34 
C.  THEOREMS AND OBSERVATIONS........................................................36 

1.  Theorem 1 ...........................................................................................37 
2.  Theorem 2 ...........................................................................................37 
3.  Theorem 3 ...........................................................................................38 

D. CONCLUSIONS OF THE CHAPTER........................................................39 

IV.  NON-ORTHODOX FUNCTIONS...........................................................................41 

 vii



A.  FOUR-VARIABLE NON-ORTHODOX FUNCTIONS ............................42 
1. Properties of the 4-Variable Non-orthodox Functions ...................43 

B.  CREATING A NON-ORTHODOX FUNCTION.......................................43 
1.  Discussion for Non-orthodox Functions...........................................44 
2.  Steps of the Algorithm 3 ....................................................................46 
3.  Verifying the Non-orthodox Function Property .............................50 

C. CONCLUSIONS OF THE CHAPTER........................................................51 

V.  EXPERIMENTAL RESULTS..................................................................................53 
A. YARATNON.JAVA.......................................................................................53 
B. FAMILY.JAVA..............................................................................................53 
C. SONKARAR.JAVA.......................................................................................54 
D. CARPIMTABLOSU.JAVA ..........................................................................57 
E. COMPARE.JAVA .........................................................................................57 
F. ESPRESSO2.JAVA .......................................................................................57 
G. USAGE OF THE JAVA PROGRAMS AND ESPRESSO IN 

EXPERIMENTS ............................................................................................58 
H. OBSERVATIONS OBTAINED FROM EXPERIMENTS........................63 

1. Lemma 1 .............................................................................................63 
2.  Lemma 2 .............................................................................................64 
3.  Lemma 3 .............................................................................................66 
4. Lemma 4 .............................................................................................68 
5. Lemma 5 .............................................................................................68 
6. Observation 1 .....................................................................................70 
7.  Observation 2 .....................................................................................71 
8. Conjecture 1 .......................................................................................74 
9.  Conjecture 2 .......................................................................................75 
10.         Non-orthodox Functions with 2n-variable.....................................76 

a.  6-variable Non-orthodox Functions.......................................76 
b.  Simplification by Applying the Law of Distrubitivity and 

Without Applying the Distrubitivity........................................79 

VI. CONCLUSIONS AND RECOMMENDATIONS...................................................83 
A. CONCLUSIONS ............................................................................................83 
B.  FUTURE RESEARCH RECOMMENDATIONS......................................85 

LIST OF REFERENCES......................................................................................................87 

APPENDIX A. YARATNON.JAVA ....................................................................................89 

APPENDIX B. FAMILY.JAVA ...........................................................................................97 

APENDIX C. SONKARAR.JAVA.....................................................................................103 

APPENDIX D. CARPIMTABLOSU.JAVA......................................................................107 

APPENDIX E. COMPARE.JAVA.....................................................................................111 

APPENDIX F. ESPRESSO2.JAVA ...................................................................................117 

INITIAL DISTRIBUTION LIST .......................................................................................125 

 viii



LIST OF FIGURES 
 
 
 
Figure 1. Disjoint Bi-decomposable function. ..................................................................5 
Figure 2. Non-disjoint Bi-decomposable function ............................................................7 
Figure 3. Karnaugh map of an OR bi-decomposable function..........................................8 
Figure 4. An ON-set input file for Espresso....................................................................17 
Figure 5. Typical output file of Espresso. .......................................................................18 
Figure 6. Function f, 312321 ),,( xxxxxxf += . ...............................................................21 
Figure 7. (a) Shows the first MIS (b) Shows the second MIS.........................................23 
Figure 8. Karnaugh map representation of the function f, minterms that denoted with     

are the distinguished minterms. .......................................................................24 
Figure 9. Maximal independent set is not always the set of Distinguished minterms. ...24 
Figure 10. Karnaugh map representation of a unite function f..........................................26 
Figure 11. Minterms of a majority function. .....................................................................26 
Figure 12. Karnaugh map representation of Self dual function f. .....................................27 
Figure 13. An incompletely specified function on 3-variables. ........................................28 
Figure 14. (a) Karnaugh Map for function f (b) Karnaugh Map for function g (c) 

Karnaugh Map for the new obtained function. ................................................31 
Figure 15. 4-variable counterexample...............................................................................33 
Figure 16. An orthodox function that belongs to the three or fewer variables subclass. ..35 
Figure 17. An orthodox function that belongs to the unate function subclass. .................35 
Figure 18. An orthodox function that belongs to symmetric function subclass................36 
Figure 19. Karnaugh map representations.........................................................................38 
Figure 20. Karnaugh map representation of function f (the minterms that denoted by 

“  ” are the distinguished minterms). ...............................................................39 
Figure 21. Set of the all functions divided among orthodox and non-orthodox 

functions...........................................................................................................41 
Figure 22. Four variables non-orthodox functions. ...........................................................42 
Figure 23. 4-variable non-orthodox function. Dashed lines show the non-essential 

PIs, solid lines show essential PIs....................................................................45 
Figure 24. Middle two rows of Figure 21. ........................................................................45 
Figure 25. 6-variable non-orthodox function. ...................................................................52 
Figure 26. Usage of the java programs to determine the 6-variable non-orthodox 

functions...........................................................................................................60 
Figure 27. Usage of the java programs to determine the penalty between 

minimization with law of distributivity and conventional minimization.........61 
Figure 28. Karnaugh map representation of . ........................................................64 yXf )(
Figure 29. Karnaugh map representation of 

42433213213214321 ),,,( xxxxxxxxxxxxxxxxxf ++++= . .................65 
Figure 30. Karnaugh map representation of . ....................................................66 yXf ∨)(
Figure 31. (a) Shows the PIs of the function f (X) (b) Shows the PIs of function    f 

(X) ⊕ y. ............................................................................................................67 

 ix



Figure 32. (a) Minterms of x5 NP01 (b) Minterms of Voight and Wegner’s [4] 
counterexample. ...............................................................................................71 

Figure 33. (a) Karnaugh map representation of f1 (b) Karnaugh map representation 
of 1f ..................................................................................................................74 

Figure 34. A 6-variable non-orthodox function with 13 don’t cares.................................77 
Figure 35. A 6-variable non-orthodox function with 14 don’t cares.................................79 
 
 
 
 
 
 
 

 x



LIST OF TABLES 
 
 
 
Table 1. All 2-variable functions. ..................................................................................13 
Table 2. NP-equivalence representation of three variable functions. ............................14 
Table 3. Summary of the two, three and four variables functions. ................................15 
Table 4. Minterms and Maxterms for 3-variable logic function f(x,y,z). .......................22 
Table 5. Percentage of the Non-orthodox functions within 4 to 10-variable 

functions...........................................................................................................42 
Table 6. The weak minterms..........................................................................................47 
Table 7. The strong minterms. .......................................................................................49 
Table 8. All the minterms that belong to the essential PIs of the 6-variable non-

orthodox function that is generated by Algorithm 1........................................50 
Table 9. Cube notations of the non-essential PIs of f.....................................................55 
Table 10. Type of the resultant function obtained from the logical OR of two disjoint 

functions...........................................................................................................68 
Table 11. Results for complementation of the chosen non-orthodox functions. .............72 
Table 12. Results for logical AND operation between all 4-variable non-orthodox 

functions and randomly chosen orthodox functions. .......................................75 
Table 13. Average requirement computation time for minimization with Espresso. ......81 
 

 xi



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 xii



ACKNOWLEDGMENTS 
 

To my thesis advisor, Prof. Butler, I would like to express my deepest thanks for 

all your support, guidance, confidence and patience. You were always near by me 

whenever I have needed you throughout my thesis work. 

To my second reader, Prof. Loomis, knowing to have such a second reader like 

you always made me comfortable. Thank you for your assistance and various helps. 

To my closest friends, Lieutenant Junior Grade Tolga Demirtas and Cihat Eryigit 

(sir), I will never forget your friendship and helps. You never refused to help me even in 

the late midnights. 

To my beloved wife, Filiz, who has always stood by me, I owe you everything. I 

would not finish this challenging journey without you and without all your support, 

encouragement, and patience. You spent your nights to wait for me in front of a TV even 

without understanding the language. Words are not enough for me to express my 

appreciation. 

Finally, thank you God for helping me.  

 
 

 

 xiii



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

 xiv



EXECUTIVE SUMMARY 
 

A logic function f is AND bi-decomposable if f can be written 

as , where X and Y don’t share any variables and ∧ is the AND 

operation. Recently, there has been interest in such functions because many practical 

functions (e.g. benchmark functions) have this property [1, 6]. This interest is also 

inspired by the prospect that a minimum sum-of-products expression can be efficiently 

computed by minimizing each subfunction separately and applying the law of 

distributivity.   That is, a divide-and-conquer algorithm can be applied that yields 

significantly reduced computation times. 

)()(),( 21 YhXhYXf ∧=

Surprisingly, the divide-and-conquer algorithm does not always yield a minimal 

sum-of-products expression.  Counterexamples have been shown [1, 6] where this 

algorithm fails.  In all known counterexamples for practical problems, however, there is a 

small difference between the minimal sum-of-products expression and the expression 

obtained by the divide-and-conquer algorithm (about 4% in terms of PIs).  Thus, it is an 

open question of whether this difference is small for all functions.   Also, no 

characterization is known for those functions for which the divide-and-conquer algorithm 

fails to produce a minimal sum-of-products expression.    The goal of this thesis is to 

address these questions. 

There are functions that always yield a minimum sum-of-products expression 

using the divide-and-conquer algorithm. They are called orthodox functions, which were 

introduced by Sasao and Butler [1]. The importance of orthodox and non-orthodox 

functions is demonstrated in this thesis.  

There are many minimizing tools. They try to give the best computation time and 

most efficient solution to logical designers. Designers usually deal with complex 

functions with many logical gates. Each logical gate requires a certain number of 

transistors depending on the technology used, and also each transistor requires a certain 

amount of room on chip. For example, in cmos technology a designer needs at least 6 

transistors to build a 2-input AND gate, 6 transistors for a 2-input OR gate and 2 

transistors for a 2-input NOT gate [9]. The required space for each of these gates depends 
 xv



on the fabrication technology. Minimizing tools usually use the law of distributivity to 

provide the most improved computation time for the minimization of the logical 

functions, since most of the practical functions have an AND bi-decomposition property. 

But, as specified, not all the functions yield the minimum sum-of-products expression 

when the law of distributivity applied. So that, when we try to realize a logical design, we 

use more transistors than needed and thus more space than needed. 

This thesis focuses on non-orthodox functions on 4 and 6-variables and orthodox 

functions on 2, 3 and 4-variables. This research may be divided into four parts. 

• Determination of functions with the bi-decomposition property and the 

type of the bi-decomposition. To achieve this goal, several algorithms are 

introduced in this thesis.  

• Determination of orthodox functions and characterization of their 

properties. This goal is accomplished by investigating known orthodox 

functions.  

• Determination of the non-orthodox function and a characterization of their 

properties. To accomplish this goal, an algorithm is introduced.  Functions 

created by this algorithm are used to explore the properties of non-

orthodox functions. 

• Demonstration of results observed from experiments with orthodox and 

non-orthodox functions.  

The results obtained from this research can be divided as follows. 

• The introduced algorithms and their applications.  

• Results that are obtained from these algorithms. 

Since orthodox and non-orthodox functions are new (they were introduced only 

two years ago [1]), there is not much background information and research in this area. 

Thus, a necessary part of this thesis work was the development of programs to investigate 

the new types of functions.  Several algorithms and their applications are introduced.  

Algorithm 3, YaratNon.java, was developed to create non-orthodox functions.  
 xvi



SonKarar.java was developed to determine types of functions (orthodox or non-

orthodox).  Espresso2.java was developed to conduct logical computations between 

functions. Minimization tool Espresso used to minimize the functions. 

This experimental research has helped to produce new lemmas, observations, and 

conjectures for orthodox and non-orthodox functions. They can be summarized as 

follows. 

• Logically ANDing a non-orthodox (orthodox) function with a literal yields 

a non-orthodox (orthodox) function.  

• Logically ORing a non-orthodox function with a literal yields a non-

orthodox function. 

• Logically EXORing a non-orthodox function with a literal yields a non-

orthodox function. 

• Complementing a non-orthodox function on 4 or 6-variables tends to 

produce an orthodox function (self-dual non-orthodox functions are an 

exception) (from experimental evidence).   It appears that this does not 

generalize to functions with more variables. 

• Logically ORing two functions on a disjoint set of variables yields a non-

orthodox function if and only if at least one of the two functions are non-

orthodox. 

• Logically EXORing two functions on a disjoint set of variables yields a 

non-orthodox function if and only if at least one of the two functions are 

non-orthodox. 

• Logically ANDing two functions on a disjoint set of variables yields a 

non-orthodox function if and only if at least one of the two functions are 

non-orthodox (from experimental evidence).  
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• It is shown that the counterexample that was proposed by Voight and 

Wegner [6], is closely related with Sasao and Butler’s [1] counterexample 

which is the simplest known non-orthodox function. 

• The penalty paid by using the law of distributivity to minimize the 

functions with AND bi-decomposition property, where each subfunction is 

non-orthodox, grows when the number of the variables of the function 

grows (from experimental result, it be as large 19 product terms for a 12-

variable AND bi-decomposable function).  

• Two representative functions are proposed. One of them has 13 don’t 

cares and the other one has 14 don’t cares. They show all 6-variable non-

orthodox functions in a compact form that were discovered during the 

experimental research. A 6-variable non-orthodox function can be 

obtained from these representatives by assigning values to the don’t cares. 

Unfortunately, not all 6-variable non-orthodox functions were discovered.  

The results that are presented in this thesis represent the first steps toward 

completely characterizing AND bi-decomposable functions, where distributivity yields a 

minimal sum-of-products expression and algorithms are introduced in this thesis show a 

way to determine the orthodox and non-orthodox functions.  
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I. INTRODUCTION AND BACKGROUND 

A.  INTRODUCTION 

Minimization is one of the most important issues in logical design. When we 

decide to develop a circuit to perform a certain task, one of the most important steps is to 

create this circuit with the minimum number of logical elements, since this reduces the 

cost, area and latency issues. However, minimization may require too much time, 

affecting the circuit’s cost. 

There are many minimization tools. Each of them uses a different approach to 

solve the minimization problem. Considering the speed of the minimization process, 

those that split the functions into components and minimize each component separately 

yield the highest efficiency. 

To split a function into components, the function has to be decomposable. A logic 

function f has a disjunctive decomposition if it can written 

as , where))(),...,(),(( 2211 nn XhXhXhgf = 0...21 =∩∩∩ nXXX . Disjunctive 

decompositions can be further categorized by the number of arguments of g. For 

example, let g be a 2-variable AND function. Then, the decomposition property can be 

specified as AND bi-decomposition. Another type of decomposition is sum-of –products. 

But why the sum-of-products form? Most of the simplification tools give their 

outputs in sum of products form, which consists of AND, OR and NOT gates. One might 

want to use NAND and NOR gates in the resultant function of the simplification process 

due to the fact that they are faster than ANDs, ORs and NOTs. The reason might be 

explained by help of an example. Let’s consider the following logical propositions “I will 

not marry with you if you are not friendly or not thoughtful and also you are not 

handsome or not blond”, “I will marry with you if you are friendly and thoughtful or if 

you are handsome and blond” which one sounds more natural? As we can observe from 

the sample expressions, using sum of products form is the most natural way to produce a 

logical expression. Also, we can always obtain the equivalent NANDs and NORs 

expressions by inserting NOTs between ANDs and ORs. 

1 



If a function has the AND bi-decomposition property, it is tempting to believe that 

its minimum sum of products representation can be obtained by applying the 

simplification processes to the components h1, h2 separately and applying the law of 

distributivity. 

It is obvious that to simplify a function by applying the law of distributivity 

approach is less complicated and less time consuming then simplifying the function 

directly, but it is not true that we always have the minimum solution for the functions we 

want to simplify. This fact has been proved by Voight and Wegner [5] in 1989. They 

showed that a logical function with AND decomposition property does not necessarily 

give us the minimum sum of products representation when we simplify it by applying the 

law of distributivity. 

After the first introduction of this idea, Sasao and Butler [1] took over the 

research. They introduced the concepts orthodox and non-orthodox functions in 2000. 

They showed that certain functions always give us the MSOP expression when we apply 

the law of distributivity. These are called orthodox functions. They include all 2 and 3-

variable functions, unate functions, all symmetric functions, a few random functions and 

many benchmark functions. 

 The goals of this thesis are summarized as follows:  

• To increase our knowledge about both orthodox and non-orthodox 

functions. 

• To determine their behavior under certain conditions, such as after an 

AND operation between two orthodox and non-orthodox functions or an 

OR operation between a non-orthodox and an orthodox function. 

• To determine other special types of functions that are non-orthodox 

function (Are threshold functions non-orthodox?). 

• To determine an algorithm to create n-variable non-orthodox functions. 

• To create an algorithm to perform experiments with the newly created 

functions. 

2 



To accomplish these purposes, it was necessary to consider 

• Decomposition property of the functions, 

• Known orthodox functions and their behaviors, 

• Known non-orthodox functions and their behaviors, 

• Experimental approaches to be able to determine new behaviors for both 

orthodox and non-orthodox functions. 

The results obtained from this thesis work may be summarized as follows: 

• An algorithm, Algorithm 3, is created from the studies of 4-variable non-

orthodox functions. Algorithm 3 used to create n-variable non-orthodox 

functions. These functions used to perform experiments. 

• Two algorithms are proposed. One of them is to determine the OR-type bi-

decomposition and the other is EXOR-type bi-decomposition.   

• By using Java language [10], a series of programs created. These 

programs are used in different steps of the experiments (i.e. to logically 

AND or OR two functions, to determine the types of the resultant 

functions of these logical operations as being either orthodox or non-

orthodox).  

• Results of the experiments that were performed with 24,576 6-variable 

and 512,000 8-variable functions, are used to develop new theorems, 

lemmas and observations for non-orthodox and orthodox functions 

• Experimental results determined family representatives for some 6-

variable non-orthodox functions.  

 

B.  BACKGROUND 

This thesis focuses on orthodox and non-orthodox functions. Such functions are 

important in the context of functions that have an AND bi-decomposition. In this section, 

we discuss bi-decomposition and formally introduce orthodox and non-orthodox 

3 



functions. Also, we discuss the Disjoint Computation Scheme Hypothesis [6], as it is an 

important part of precedent for this thesis. 

 Orthodox and non-orthodox functions have special meaning in the context of 

Disjoint Computation Scheme Hypothesis, denoted as DCSH. The main idea of this 

hypothesis is nothing more than the application of distributivity law. DCSH suggests that 

if there are two functions that have disjoint sets of variables then the AND or OR of these 

two functions when simplified is no better than when taking the optimal computations 

scheme of the two functions seperately. 

It is specified in the introduction that to be able to apply this hypothesis to a 

function, the function has to have a property known as decomposition. This thesis 

narrows down its focus to the functions that have the bi-decomposition property (instead 

of general decomposition). So, the following sections mostly related to bi-decomposition. 

Besides that, since the bi-decomposition property is just a subcomponent of the 

decomposition property, the reader will encounter both decomposition and bi-

decomposition concepts for sake of completeness. 

    

1.  Bi-decomposition 

Decomposition of a Boolean function means breaking the large logic blocks into 

small ones, without changing the functionality of the original function. For example, the 

sum of products form of a function f is a decomposition of f into the OR of product terms, 

where each product term is the AND of variables or complements of variables. An 

advantage of such decomposition is the large body of knowledge and CAD tools 

available for their design (e.g. Espresso [8]). Another example is a fanout-free 

representation of a function, where no gate is allowed to drive more than one other gate. 

Not all functions have a fanout-free decomposition. An advantage of fanout-free 

representations is that they are easily tested. 

Definition 1: Function f(X) has a bi-decomposition if it can be expressed as  

                                                                       

where * is the AND, OR or EXOR (exclusive or) on two variables.  

),()()( 2211 XhXhXf ∗=
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For example function f, where 43214321 ),,,( xxxxxxxxf += , has OR bi-

decomposition property, since we can specify h1(X) as x1x2 , h2(Y) as x3x4 and g as the OR 

operator.  

a.  Disjoint Bi-decomposition  

In this section, we consider a special case of bi-decomposition. 

Definition 2: Function f(X) has a disjoint bi-decomposition, if f(X) has a 

bi-decomposition, 

  ),()()( 2211 XhXhXf ∗=                                       

where X1 and X2 are disjoint (share no variables).  

For example, same function f can be used, since it has an OR bi-

decomposition property on two sets of variables {x1, x2}, {x3, x4} that do not overlap. A 

function with a disjoint bi-decomposition can be realized by the circuit shown in Figure 

1.  Here, g represents the function *. 

 

 

f 

 
X2 

 
X1 

g 

h2 

h1 

 

 

 

 

 

 

 

 

Figure 1.   Disjoint Bi-decomposable function. 
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Definition 3: Function f(X) has an AND, OR or EXOR disjoint bi-

decomposition, if f(X) has a bi-decomposition, 

 ),()()( 2211 XhXhXf ∗=           

where * is AND, OR, or exclusive OR, respectively, and X1 and X2 are disjoint.  

Figure 1 shows the form of the circuit that realizes a function with a 

disjoint bi-decomposition. For example, the function in the running example has a 

disjoint OR bi-decomposition. 

Sasao and Butler [1] have shown a synthesis technique for functions with 

disjoint bi-decompositions. It is known that, as the number of the variables increases, the 

fraction of functions with disjoint bi-decompositions becomes vanishingly small. In spite 

of this, the number of functions with bi-decompositions used as benchmark functions for 

the evaluation of logic synthesis techniques is quite large. This suggests that, although bi-

decompositional functions are a small fraction of all functions, they are important in 

practical design applications. 

 

b. Non-disjoint Bi-decomposition 

Definition 4: A Boolean function f has a non-disjoint bi-decomposition if 

and only if  f can be represented as follows, 

  f (X) = f (X1, X2, y) = g (h1 (X1,y), h2 ( X2,y)),       

where g is any 2-input logic function and X1 ∩ X2 = 0 and y is a single variable.  

Figure 2 shows the circuit realization of a function with a non-disjoint bi-

decomposition. In the case of non-disjoint bi-decompositions, it is more difficult to find 

the component functions than in the case of disjoint bi-decompositions. 

 Consider the function f, where 2131321 ),,( xxxxxxxf += . The function f 

can be represented as f (X) = f (X1, X2, x1) = g (h1 (X1, x1), h2 (X2, x1)), where X1∩X2 = 0 

and g is OR operand so that f has an OR bi-decomposition. This function also can also be 

represented as follows; 2131321 ),,( xxxxxxxf ⊕=  and ))((),,( 2131321 xxxxxxxf ++= . 

Thus, f has both OR and EXOR bi-decomposition [1].  
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y 

 
X2 

 
X1 

g 

h2 

h1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.   Non-disjoint Bi-decomposable function 
 
 

c.  Methods to Determine the Type of Disjoint Bi-decomposition 

In this section, we show how to determine the component functions of the 

functions that have an OR or EXOR disjoint decomposition. This is sufficient for finding 

the component functions of a function with any kind of disjoint decomposition, since a 

function f has an AND disjoint bi-decomposition if and only if f  has the OR disjoint bi-

decomposition. 

1. Algorithm for functions with an OR-type bi-decomposition. 

A function f has the OR disjoint bi-decomposition property, f (X1, X2) = h1 (X1) OR h2 

(X2), if and only if every product term of ISOP (irredundant sum-of-products) consists of 

literals belonging to input set X1 only or X2 only. We can use several methods to 

determine if a function has an OR bi-decomposition property or not; 

• Using the Karnaugh map 

The function should have all 1’s grouped in a subset of 

columns and a subset of rows and also none of these columns and rows can contain 0’s 

[7]. 
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1 0 1 0 

1 0 1 0 

1 0 1 0 

1 1 1 1 

ab 

00 
 
01 
 
11 
 
10 

00 01 11 10cd 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.   Karnaugh map of an OR bi-decomposable function 
 

Figure 3 shows a function f, dcbadcbaf +⊕=),,,( , that 

has the OR bi-decomposition. In this case, f can be represented as 

 where,)()(),( 221121 XhXhXXf += dcXhbaXh =⊕= )(,)( 2211 ,  and 

. This method is useful for functions that have a small number of inputs. 

{ baX ,1 = }
{ }dcX ,2 =

 

• Using the ISOP representations of the functions 

The ISOP representation of a function is the OR of prime 

implicants (PIs), none of which are redundant. Application of this method relies on 

examining the PIs with respect to common literals and creating subsets with the literals of 

the PIs that have at least one common literal. 

Let { }mPPPPI ,...,, 21= be the set of PIs associated with the 

given ISOP. The algorithm for determining the OR bi-decomposition of f forms disjoint 

subsets of X, the set of variables. The algorithm examines each P''
2

'
1 ,...,, pXXX

,, '
2

'
1 XX

i, in turn 

modifying etc. as it proceeds.  
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ALGORITHM 1 

1. ←1X φ 

2. for i = 0 to m do 

  if (Pi shares a variable with any ) '
jX

coalesce into one subset all that share a variable   

with Pi. 

      else 

  form a new subset containing all variables in Pi. 

         end 

3. if (there is one subset) 

  stop (failure) 

       else 

←)(1 Xh
'
1X

OR of all a Pi’s such that Pi depends on 

variables in . 

  ←)(2 Xh OR of all other Pi’s. 

    stop (success).  

 

For example, apply the algorithm to the 

function . Let Pdebcabdcbaf ++=),,,( 1= ab, P2=bc and P3=de.  Create the first subset 

with the literals of P1 call it X1, { }ba,1X = . Examine P2 with respect to X1.  Since they 

share the literal b, add the literals of P2 to subset X1. Proceed by examining the product 

term P3 with respect to subset X1. Since it does not have common literals with subset X1, 

create a new subset called X2. X2 consists of the literals of P3, i.e. . Since the 

total   number of   the    subsets is 2, function f has   an   OR bi-decomposition,        and     

it can be written as 

{ edX ,2 = }

)1X() 12 hX,( 1Xf =  + , where  )( 22 Xh { },,, cba=1X

{ } bcabXhe +dX ==2 )(,, 11 , and .de)( 22 Xh =  

This method can also be used for the determination of the 

OR decomposition property. As it is specified earlier in the discussion, bi-decomposition 
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is a subset of decomposition that requires exactly two subfunctions, while decomposition 

has more subfunctions. 

 

2.  Exor type bi-decomposition algorithms. Among the 

different ways of representing an arbitrary function is the Reed-Muller expression. In this 

representation, we have a standard expression for the representation of the all n-variable 

functions, called the positive polarity Reed-Muller expression (PPRM). It is formed as 

follows; 

311321122211021 ()...(),...,,( xxaxxaxaxaxaaxxxf nnn ⊕⊕⊕⊕⊕⊕=

nn xxxa ...... 21...12⊕nnn xxa )... 1...1... ⊕⊕⊕ , where { }.1,0∈ia  For a given function f, the 

coefficients are uniquely determined. 

A given function f has the EXOR bi-decomposition 

property,  EXOR , if and only if every product in the PPRM 

for f consists of literals that belong to set X

)(),( 1121 XhXXf = )( 22 Xh

1 only or X2 only. As in the OR bi-

decomposition case, we have different ways to determine whether a function has this type 

of bi-decmposition.  

• Using the Reed-Muller expression 

 Like ISOP’s, all implicants in a Reed-Muller PPRM are 

irredundant. As in the usage of the ISOP representation for determining the OR bi-

decomposition property, this method also relies the examination of the product terms 

with respect to common literals and creating subsets with the literals of the product terms 

that have at least one common literal. At the end of the process, we should have at least 

two subsets of literals to be able to state that the function under examination has the 

EXOR decomposition property. If we have 2 or more subsets of disjoint variables, then 

the function has the EXOR bi-decomposition property.  

Let ,ix ),...,2,1( ni = , be the input variables of f. Let 

 be the PPRM for function f, where tppp ⊕⊕⊕ ...21 ip ),...,2,1( ti = are products. The 

algorithm forms disjoint subsets of X, the set of variables. The algorithm 

examines each P

''
2

'
1 ,...,, pXX

,, '
2

'
1 XX

X

i, in turn modifying etc. as it proceeds. 
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ALGORITHM 2 

1. ←1X φ 

2.  for i = 0 to t do 

  if (pi shares a variable with any ) '
jX

coalesce into one subset all that share a variable 

with Pi. 

     else 

  form a new subset containing all variables in pi. 

     end 

3.  if (there is one subset) 

  stop (failure) 

    else 

←)(1 Xh  EXOR of all a pi’s such that pi depends on 

variables in . '
1X

 ←)(2 Xh  EXOR of all other pi’s. 

   stop (success). 

 

For example, apply the algorithm to the function f, 

. Let Paecdabedcbaf ⊕⊕=),,,,( 1= ab, P2=bc and P3=de.  Create the first subset with 

the literals of the P1, call it X1, where { }baX ,1 = . Examine P2 with respect to X1 since they 

do not share any literals create a new subset called X2. X2 consists of the literals of P2, 

.{ }dcX ,2 =

)()(),( 221121 XhXhXXf ⊕=

 Continue examining the product terms with P3, examine it with respect to X1 

first, since it does have a common literal with subset X1, namely b, add the literals of the 

P3 to subset X1. Now we’re done with the examination of the product terms and we have 

two subsets X1 and X2. Since the number of the subsets is more than one we can state that 

function f has the EXOR bi-decomposition property and we can represent it as following 

 where { } { }dcXeb ,,, 2aX ,1 == ,  and 

. 

aeabXh ⊕=)( 11

cdXh =)( 22
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d.  Number of the Functions with Bi-decomposition Property 

As specified earlier, there are two types of bi-decompositions; disjoint and 

non-disjoint. In the previous sections, different algorithms are presented to find various 

bi-decompositions of a function. In the case of disjoint bi-decomposition, it is easy to 

determine the type of bi-decomposition. But, this is not the case for the non-disjoint bi-

decomposition. 

Before presenting the numerical results consider the following. 

Definition: Two functions, f1 and f2, are NP-equivalent if f2 can be 

obtained from f1 by complementing and/or permuting variables of f1. For example, 

211 xxf +=  is NP-equivalent to 212 xxf += , since f2 is obtained from f1 by interchanging 

(permuting) x2 and x1. 

All 2-variable functions have a bi-decomposition as shown in Table 1. 

Consider the function , it is a function that depends on 1 of the 2 variables. 

This function has the AND bi-decomposition property, since it can be represented 

as , where = x

121 ),( xxxf =

)() 22 Xh(),( 1121 XhXXf = )( 11 Xh 1 and = 1. It also has an OR bi-

decomposition, since it can be expressed as 

)( 22 Xh

,( 21 XX )()() 2211 XhXhf ∨= where 

and . Similarly, it has an EXOR bi-decomposition. 111 )( xX = (2 Xhh 0)2 =
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2-variable function # of variables 

function depend 

on 

Type of bi-decomposition 

0 0  

1 0  

1x  1 AND bi-decomposition 

2x  1 AND bi-decomposition 

1x  1 AND bi-decomposition 

2x  1 AND bi-decomposition 

21xx  2 AND bi-decomposition 

21 xx  2 AND bi-decomposition 

21xx  2 AND bi-decomposition 

21 xx  2 AND bi-decomposition 

21 xx +  2 OR bi-decomposition 

21 xx +  2 OR bi-decomposition 

21 xx +  2 OR bi-decomposition 

21 xx +  2 OR bi-decomposition 

21 xx ⊕  2 EXOR bi-decomposition 

21 xx ⊕  2 EXOR bi-decomposition 

Table 1.   All 2-variable functions. 

In the case of three variable functions, we have a total of 256 logical 

functions and these functions can divided into 16 NP-equivalence classes as shown in the 

Table2 [3]. 
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Representative function of the 

NP-equivalence class 

# of 

functions 

Type of the bi-

decomposition 

Property of the bi-

decomposition 

x1 ⊕ x2⊕ x3 

x1x2x3 

x1 + x2 +x3 

x1 (x2 +x3) 

x1 + (x2 x3) 

x1  (x2 ⊕  x3) 

x1 + (x2 ⊕  x3) 

x1 ⊕ x2 x3 

2 

8 

8 

24 

24 

12 

12 

24 

EXOR 

AND 

OR 

AND 

OR 

AND 

OR 

EXOR 

DISJOINT BI-

DECOMPOSITION 

x1x2x3 + x1x2x3 

( x1+x2+x3 ) (x1+x2+x3) 

x1x3 + x1x2 

x1x2x3 + x2x3 

(x1+x2+x3) (x2 +x3) 

4 

4 

24 

24 

24 

 NON-DISJOINT 

BI-

DECOMPOSITION 

(one variable 

common) 

x1x2 + x2x3 + x3x1 

x1x2 + x2x3 + x1x3 + x1x2x3 

x1x2x3 + x1x2x3 + x1x2x3 

 

 

8 

8 

8 

 NO NON-

DISJOINT BI-

DECOMPOSITION 

(one variable 

common) 

Table 2.   NP-equivalence representation of three variable functions. 
 

Table 3 [3] shows the number of the NP-equivalence classes and type of 

the bi-decomposition that each class has for functions with two, three and four variables 

as a summary. 
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Number of the variables n = 2 n = 3 n = 4 

Number of the functions 16 256 65536 

Number of functions with 

Disjoint Bi-decomposition 

AND 

OR 

EXOR 

4 

4 

2 

44 

44 

26 

1660 

1660 

914 

Number of functions with  

Non-disjoint Bi-

decomposition 

 0 80 3680 

TOTAL 10 194 8094 

Table 3.   Summary of the two, three and four variables functions. 
 
 
 

2. Espresso  

The program Espresso is important in this thesis, since all the lemmas, conjectures 

and theorems presented in Chapter V were inspired by the results of this software [8]. It 

is discussed in detail here.  

The most important portion of this thesis is the experimental research part, and for 

conducting the experiments, a tool is needed that could minimize the functions under test 

to their minimum sum of products in a reliable way and also with acceptable speed, since 

the number of the functions that was planned to be dealt with was too large. In respect to 

these conditions, available tools were evaluated and eventually Espresso was chosen.  

 The primary reasons for choosing Espresso are  

• More reliable results 

• Short process time 

• Free 

• Available both for windows and unix environment 
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• Robustness (unlike other tools, it was developed by not a person but a big 

team from University of California- Berkeley so that it is more robust.) 

Espresso version 2.3 was released by Berkeley on 31 January 1988. It is based on 

the Quine-McCluskey Method, which simplifies a logical expression that is in disjunctive 

normal form, to obtain an equivalent minimal disjunction of conjunctions (sum of 

products). 

Since Espresso is based on the Quine-McCluskey Method, Quine-McCluskey 

Method will be discussed briefly. The Quine-McCluskey Method is based on repeated 

applications of the distributive law and the complement law ( 1=∨ aa ).  

For example, consider xzzyyxzyxxyz =+=+ )( .  

 The steps of the algorithm can be summarized as rewrite, reduction and selection 

step.  

Rewrite step: The first step in the minimization process according to Quine-

McCluskey method is to rewrite the minterms using 1s and 0s instead of the literals. This 

new representation is called the bit string form [8]. 

Reduction step: In this step of the Quine-McCluskey method, pairs of the strings 

are compared. If two bit strings agree in all bits and disagree in one bit (e.g. 111 and 

101), they are combined. A table is formed by usage of the generated bit strings called 

reduction table [8]. 

Selection step: After the accomplishment of reduction step, a table (selection 

table) is formed. It has the original minterms as column headers. The reduction table is 

examined to take the term with the fewest literals. This term becomes the first row of 

selection table. The minterms that are used to obtain this term are marked by asterisks. 

The minterms that are not labeled become the missing minterms and the terms from the 

reduction table that have this/these missing minterm or minterms become the next rows 

of the selection table [8].  
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a.  Keywords and Usage of Espresso 

Espresso takes a 2-level representation of a two-valued or multi-valued 

logical expression and produces a minimal equivalent representation for this function. 

Also, it automatically verifies that the minimal representation obtained at the end of the 

process is equivalent to the original function. 

Espresso reads the provided file, performs the minimization, and outputs 

the result as a file (or it can prompt the result directly to the screen of the computer). The 

user can provide the input function in different ways: he/she can use the ON-set 

representation, ON-set and DC-set, ON-set and OFF-set or ON-set, OFF-set and DC-set. 

ON-set refers to the minterms that imply the function value is a 1. OFF-set refers the 

minterms that imply the function value is a 0. DC-set refers the minterms that are 

unspecified, namely don’t cares. The default for Espresso is the ON-set. Figure 4 

illustrates an example input file (for the function 

).
),,,(

xyzw
wzxyzwyxyzwxwzyxwzyxwzyxwzyxzwyxwzyxwzyxf

+
++++++++=

 

.i 4 

.o 1 

0010 1 

0011 1 

0100 1 

0101 1 

1000 1 

1001 1 

0111 1 

1011 1 

1101 1 

1111 1 

.e 

Figure 4.   An ON-set input file for Espresso. 
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Figure 4 shows a very basic input file, which is sufficient for the 

minimization of the function. If we go through the input file, we encounter keywords “.i”, 

“.e” and “.o”. 

• .i (number): Specifies the number of the input variables. In our 

running example, it is 4 and thus the usage is “.i 4”. 

• .o (number): Specifies the number of the output functions. In our 

running example, it is 1, and thus the usage is “.o 1”. 

• .e         :  Marks the end of the description of the product 

terms. 

Certain lines between the keywords .i and .e represent product terms of the 

function. 0 stands for a complemented literal (i.e. ix ) of the minterm and 1 stands for a 

not complemented (i.e. ). ix

Also, we can have comment lines, which do not have any effect in the 

minimization process. These lines begin with the pound sign (#) into the line. These of 

course are not the only keywords of the tool, but for our purpose, these are sufficient. 

Figure 5 shows the output file of Espresso corresponding to the input file in Figure 4. 

 

.i 4 

.o 1 

.p 5 

-1-1 1 

--11 1 

100- 1 

010- 1 

001- 1 

.e 

Figure 5.   Typical output file of Espresso. 
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As we can see in Figure 5, we have a new keyword, which is “.p”. This 

keyword specifies the number of the PIs in the minimized sum-of-products expression of 

the function. Since this output file belongs to our running example function f, we can 

state that the MSOP for function f has 5 PIs. So the minimized equivalent of our running 

example is zwywzyxzyxzyxwzyxf ++++=),,,( . 

To invoke Espresso use the format espresso (inputfile-name).es > 

(outputfile-name).out. As can be seen from the syntax, we use the “.es” extension for the 

input files and “.out” extensions for the output files. Since this tool works in the Unix 

operating system to create an input file, one can use either texteditor or vi editor of Unix.  

Besides the keywords, Espresso has flags. One that was especially useful 

in the research presented in this thesis is –Dexact. For 10 or more variable functions flag            

-Dexact guarantees the minimum number of product terms at the end of the minimization 

process. Also experiments showed that usage of this flag might cause excessive 

computation time, particularly with 12 and more variable functions. In Chapter V, a table 

will show the average computation times of Espresso for functions with different number 

of variables.  

After the introduction in this chapter of disjoint bi-decomposition and the 

minimization tool, Espresso, notations and basic definitions are addressed in Chapter II of 

this thesis. 
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II. NOTATION AND DEFINITIONS 

A.   LITERAL 

Let y be a switching variable; i.e. { }1,0∈y  and let y be the complement of y. The 

logical AND of two or more literals is a product or implicant. Product p is an implicant of 

function f, if f is 1 whenever p is 1 [2]. 

Consider the following example; Let 3221321 ),,()( xxxxxxxfXf +== . It is clear 

that and 21xx 32 xx

3

 are implicants of . However, so also is  since )(Xf 31xx )(Xf  is 1 

whenever  is 1.  Further, 1xx 21xx  is not an implicant of , since and )(Xf 0=f 1=21xx  

when . 0103 =x21xx

 

B.  PRIME IMPLICANT (PI) 

Implicant p is a prime implicant of if the elimination of one or more literals 

causes p not to be an implicant of . 

)(Xf

)(Xf

A prime implicant of  is an essential prime implicant if there exists an input 

a, where  but  for all other prime implicants of . 

)(Xf

0=1)( =ap )(' ap )(Xf

Consider, 312321 ),,( xxxxxxf += , Figure 6 shows the minterms and the prime 

implicants of the function f. There are two PIs; p1 = x2 and 312 xxp = . 

 
x1 x2 

    x3  

 0 
 
 1 

00 01 11 10

     1   1  1  

     1   1    

 

 

 

 

 

Figure 6.   Function f, 312321 ),,( xxxxxxf += . 
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C. MINTERM AND MAXTERM 

A minterm is a product term with n literals such that each variable appears exactly 

once. On the other hand, a maxterm is a sum term with n literals such that each variable 

appears exactly once [4]. Table 4 shows minterms and maxterms for a 3-variable logic 

function, where variable set { }zyxX ,,= . 

Minterms  also can be named as ON-set and maxterms as OFF-set. 

 

x         y          z f MINTERMS MAXTERMS 

0          0          0 f(0,0,0)  zyx  zyx ++  

0          0          1 f (0,0,1)  zyx  zyx ++  

0          1          0 f (0,1,0)  zyx  zyx ++  

0          1          1 f (0,1,1)  yzx  zyx ++  

1          0          0 f(1,0,0) zyx   zyx ++  

1          0          1 f (1,0,1) zyx   zyx ++  

1          1          0 f (1,1,0) zxy   zyx ++  

1          1          1 f (1,1,1) xyz   zyx ++  

Table 4.   Minterms and Maxterms for 3-variable logic function f(x,y,z). 
 
 
D. CUBE NOTATION 

A product term can be expressed in cube notation as follows. Each occurrence of 

 in p is represented by a 1. Each occurrence of ix ix is represented by a 0. Missing 

variables are represented by a -.  

For example, the two 4-variable minterms 4321 xxxx and 4321 xxxx have the cube 

representations 0100 and 1100, respectively. Note that these two minterms combine 

together into a single product term, as follows. 
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43243214321 xxxxxxxxxxx =∨ . 

The resultant product term, 432 xxx has the cube notation -100. 

 

E. STRONG AND WEAK MINTERMS 

Let m be a minterm of f. If the number of the 1’s in m is 
2
n or more (or less), then 

m is a strong (weak) minterm, where n is the number of variables of f. 

For example, the minterms 01000 and 11010 are weak and strong minterms, 

respectively. Minterm 001011 is both strong and weak. 

 

F. INDEPENDENT SET OF MINTERMS 

Let  be the set of true minterms for function f. Then,  is an 

independent set of minterms of function f, if and only if no PI of f covers more than one 

minterm in . 

)( fM

)( fMI

)()( fMfMI ⊆

( )fη  is the number of the minterms in ; i.e. )( fMI ( ) )( fMIf =η . 

Consider the Karnaugh map representation of function f, xyyxzyxf +=),,( ,

011,000

 in 

Figure 7. This function has 4 different maximal independent sets of minterms;{ }, 

,  and { . Minterms marked by stars in Figure1.4 shows two 

sets. Note that

{ }111,001 { }111,000

( ) =f

}110,001

2η . 

 

 
 
 
 
 
 
 

x y 

    z  

 0 
 
 1 

00 01 11 10

     1      1 

     1      1 

x y 

    z  

 0 
 
 1 

00 01 11 10

     1      1  

     1      1 

 
 

(a) (b) 
Figure 7.   (a) Shows the first MIS (b) Shows the second MIS. 
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G. DISTINGUISHED MINTERM 

Given a function f, let be the set of true minterms of f. Then, 

 is a set of distinguished minterms, if exactly one PI of f covers each 

minterm in [1]. 

)( fM

)()( fMfMD ⊆

( fMD )

Consider the function f, where function 321321 ),,( xxxxxxf ++= . This function 

has 3 distinguished minterms, namely 010, 100 and 001. Figure 8 shows the Karnaugh 

map representation of the function f and the distinguished minterms of it. 

x y 

    z  

00 
 
01 

00 01 11 10

  1   1   1   1 

  1   1   1    

 

 
 
 
 
 
 
 

Figure 8.   Karnaugh map representation of the function f, minterms that denoted with     are 
the distinguished minterms. 

 

Note that a set of distinguished minterms is an independent set of minterms. The 

converse is not true. Figure 9 shows a three variable function whose maximal 

independent set has three minterms (marked by stars). However this set is not a set of 

distinguished minterms. 

 

 

 

 00 

    z  

x y 

 
01 

     1   1   1 

  1   1      1 

00 01 11 10

 

 

Figure 9.   Maximal independent set is not always the set of Distinguished minterms. 
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H. ISOP (IRREDUNDANT SUM OF PRODUCTS) 

The logical OR of all products (implicants) of a function is the complete sum-of-

product (CSOP) of a function f. If we eliminate products from the CSOP of f to the point 

where eliminating any remaining products will change the function yields an irredundant 

sum of products (ISOP). 

 

I. MSOP (MINIMUM SUM OF PRODUCTS)     

Among all the ISOPs, one that has the fewest PIs is called a minimum sum of 

products (MSOP). The cost of function f, ( )fMSOP :τ  is the number of the prime 

implicants in the MSOP of a given function f, e.g. ( ) 2: =fMSOPτ in Figure 6. 

 
J. SYMMETRIC FUNCTION 

A function f is symmetric in variables xi and xj if interchanging xi and xj leaves f 

unchanged. For example, both and 321 xxx 321 xxx + are symmetric in x1 and x2. A 

function is symmetric, if it is symmetric in all pairs of variables [2]. 
n
AS  denotes a symmetric function, that has the logical value 1 if m of its n 

variables are 1, where , and has the logical value 0 otherwise. Am ∈

Example; symmetric function  can be written as follows, ),,(3,1 zyxS

zyxzyxzyxxyzzyxf +++=),,( . f is 1 when 1 or 3 of its variables are 1, and is 0 

otherwise. 

       
K. UNATE FUNCTION 

A function  is positive in variable , if there exists a SOP 

(conjunctive expression) for the function in which  appears only in uncomplemented 

form. is negative in , if there exists a SOP (conjunctive expression) for 

the function in which  appears only in complemented form. If f is either positive or 

negative in , then it is said to be unate in . If a function is unate in each of its 

variables, then this function called a unate function [2]. 

),...,,( 21 nxxxf

)

ix

ix

ix

,...,,( 21 nxxxf

ix

ix

ix
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Consider the function f, 43214321 ),,,( xxxxxxxxf += , which is an unate function, 

since it is positive in all its variables. Figure 10 shows the Karnaugh map representation 

of function f.  

 

 

 

 

 

 

 

Figure 10.   Karnaugh map representation of a unite function f. 
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L. MAJORITY FUNCTION 

Majority functions are a subclass of symmetric functions. A symmetric function f 

is a majority function if and only if, the number of the variables is odd and f is 1 if and 

only if more than half of the variables are 1 [2]. 

The symmetric function f, 3132213212 ),,( xxxxxxxxxf ++=  is a majority 

function, since 2 of the 3 variables must be 1 (true) for the whole function to be 1 (true). 

Figure 11 shows the Karnaugh map representation of the function. 

 x1 x2 

    x3  

 0 
 
 1 

00 01 11 10

  1   1   1    

     1       

 

 

 

 

Figure 11.   Minterms of a majority function. 
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M.  SELF DUAL FUNCTION 

An arbitrary function f is said to be a self dual function if and only if 

),...,,,(),....,,,( 321321 nn xxxxfxxxxf = [2]. 

Consider the function 323121321 ),,( xxxxxxxxxf ++= . It is self dual. Since, this 

function is the symmetric function , which is 1 if and only if 2 or 3 of the 

variables are 1, complementing the variables of yields a function that is 1 

if 0 or 1 of the variables are 1. But, this is also the complement of .  

),,( 3213,2 xxxS

),,( 3213,2 xxxS

),,( 3213,2 xxxS

 

 x1 x2 

    x3  

 0 
 
 1 

00 01 11 10

  1   1   1    

     1       

 

 

 

 

Figure 12.   Karnaugh map representation of Self dual function f. 
 
 
N. INCOMPLETELY AND COMPLETELY SPECIFIED FUNCTIONS 

Let f be an incompletely specified symmetric function on n-variables given as 

follows. 

=),...,,( 21 nxxxf 0 if all variables are 0 

   =1 if one or zero variables are 0 

   = - (don’t care) otherwise, where n ,  2>

Figure 13 shows this function for the case n=3. 

A completely specified function g is said to cover an incompletely specified 

function f if g is 0 and 1 for all assignments of values to variables for which f is 0 and 1, 

respectively  [1]. 
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Figure 13.   An incompletely specified function on 3-variables. 
 

 

O. NP-EQUIVALENT 

Consider two functions;  and . Function  is NP-equivalent to 

 if,  can be obtained by a complementation and/or permutation of the 

variables of . 

)(Xf )(Xg )(Xf

)(Xg )(Xg

)(Xf

Consider the functions 21)( xxXf += and 21)( xxXg +=

)

, where . 

Function is NP-equivalent to , since it is obtained from the permutation of the 

variables of function . Also note that can be obtained from by a 

complementation of variables. 

{ }21 , xxX =

)(Xg

)(Xf )(Xg

)(Xf (Xf

 

P. CONCLUSIONS OF THE CHAPTER 
In this chapter the notations and basic definitions that are going to be mostly 

encountered by the reader presented. The orthodox functions and their known properties 

are addressed in the following chapter, Chapter III. 
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III. ORTHODOX FUNCTIONS 

This chapter focuses on a special type of function called an orthodox function. 

Orthodox functions are important because, if the subfunctions of an AND bi-

decomposable function f are orthodox functions, then a circuit for f can be designed by 

using a divide-and-conquer algorithm that dramatically reduces the design cost.  

Before introducing orthodox functions we discuss the Disjoint Computation 

Scheme Hypothesis, or DCSH proposed by Voight and Wegner [5].  

 

A.  DISJOINT COMPUTATION SCHEME HYPOTHESIS (DCSH) 
The Direct conjunction or the AND of two functions, where the variable subsets 

are disjoint from each other, can be defined as follows =∧ ),...,,,...,,)( 2121 nn yyyxxxgf

)),...,,( 21 nyyyg

(             

and direct disjunction or the OR of two functions, 

where the variables subsets are disjoint from each other, can be defined as follows;         

)),...,,(),...,,(( 2121 nn yyygxxxf ∧

),...,,,,...,,)(( 2121 nn yyyxxxgf ),...,,(( 21 nxxxf ∨=∨ .  

One might expect that the minimal sum-of products expression of f ^g or f ∨g  can 

be obtained by finding the minimal sum-of-products expression f and g separately and 

computing the conjunction or disjunction of them. The Disjoint Computation Scheme 

Hypothesis states this. In applying it, we achieve a significant advantage since the 

computation time for computing the MSOP of f and g is usually much less than for 

computing the MSOP of f ^g or f ∨g.  

Lemma; let p1 and p2 be implicants on X1 and X2, where 021 =∩ XX .Products p1 

and p2 are PI’s of and respectively if and only if; )( 11 Xh )( 22 Xh

• p1 and p2 are PI’s of , and )()( 2211 XhXh ∨

• p1  p2 is a PI of  )()( 2211 XhXh

Following is the proof of the above statement. If p is a PI of either h1 or h2, it is trivially 

an implicant of . Since21 hh ∨ 021 =∩ XX , p is also a PI of . Let p be a PI 21 hh ∨
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of . It can be expressed as21 hh ∨ 21 ppp = , where p1 consists of literals from X1 only and 

p2 consists of literals from X2 only. Since p is a PI of , an assignment of values to 

the variables associated with causes either h

21 hh ∨

)( 22 Xh

2p

21 pp

)( 11 Xh ∨

1p

( )

1 or h2 or both to be 1. Assume h1 is 1. 

Since h1 is 1, p1 is an implicant of h1. But, can’t be a PI unless . p21 pp

(2 Xh

1h

12 =p

2p

1 must be a 

PI of h1. On the contrary, if not, it implies a PI, of h'
1p

)

)1X

1. Thus must be a product 

that implies , that is implied by . But this is a contradiction, since is a PI, 

it must be that  p

'
1p

21 hh ∨

)( 22 Xh

21 pp

(1 Xh

1 is a PI of h1 [1]. 

)( 22 X

)( 11 X

( ) ( gMSOP :f:MSOPg τττ +=

( ) ( ) ( )g:MSOPf:MSOPg τττ =

gf ∨

gf ∧:MSOPτ ( ) ( ) ( )gf:MSOPgf:MSOP :ττ≤∧

( ∨∨ ...∨ ff: 1MSOPτ

( ) ) ( )nf:MSOP...f1MSOP ττ +++

(Xf )(Yg ∩X

( ) ( )gMSOPf:MSOPf: ττ +∨ (f

,(a 1)( =bg

From the above lemma, it can be stated that the OR of MSOPs for and 

is an SOP that represents . Similarly, the AND of MSOPs for 

and  is an SOP that represents . The Disjoint Computation 

Scheme Hypothesis also states same ideas, and they can be expressed as follows; 

)1

h

h

2

(

• )fMSOP : ∨ , and 

• fMSOP : ∧ [1]. 

DCSH holds in every case of , but a similar statement is not true for gf ∧ . 

This is a surprising result and leads us a new expression for the DCSH specifically 

for ( ) . It is MSOPτ . 

 

1.  DCSH for f ∨ g 

Use the abbreviation DCSH (∨) for direct disjunction. As was mentioned earlier, 

DCSH (∨), holds in every case. Specifically ) =nf2  

( fMSOP :: 2τ and no fi is a constant 1. This is not a 

surprising result and can be easily proved as follows. 

Let  and  be two functions, where) 0=Y . 

Then ( )gMSOP :τ= . Consider an input a, that 0) =a  

then each input , where )b  is covered only by the prime implicants from 
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function g. Thus, it is needed ( )gMSOP :τ  PIs from function g and ( )fMSOP :τ  PIs 

from function f. 

)(Xf 212 ) xx +=

)(af

Consider functions  and , where )(Yg 1 ,( xxf  and 

2121 ),( yyyyg = , the result for the direct disjunction of these two functions 

is 212 ) yy∨1( xxgf +=∨  and number of the PI in the MSOP representation of this new 

function is three according to DCSH (∨). The Karnaugh maps in the Figure 14 show this 

function.  
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   (c ) 
Figure 14.   (a) Karnaugh Map for function f (b) Karnaugh Map for function g (c) Karnaugh 

Map for the new obtained function. 
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Choose the input a as 10, where 0= , and b as 11, where . As can be 

seen from Figure 14 (c), inputs (  for the new function yields 1 in the Karnaugh map 

representation, and this 1 comes from function g, which means that it can be covered only 

1)( =bg

),ba



by a prime implicant that belongs to function g. If we pick a as 00, where , and b 

as 00, where , from Figure 14 (c) the input  for the new function is a 1 and 

this time it comes from the function f. Thus, it can be covered by a prime implicant that 

belongs to function f. Prime implicants that are marked by a thin line come from f and 

prime implicant that is marked dashed and thick line comes from g so that the total 

number of prime implicants of newly obtained function is three for its MSOP, which 

matches the result of the DCSH (∨). 

1)( =af

0)( =bg

( )

),( ba

g τ=∧

f

 

2.  DCSH for f  ^ g 

To represent the AND DCSH, we use the abbreviation DCSH (^). Unlike     

DCSH (∨), DCSH (^) does not hold in every case. Voight and Wegner [5] have proved 

this in 1989 by using a 5-variable function and in February 2001 Sasao and Butler [1] 

reproved it by using a 4-variable function. Also, they proved that this was the simplest 

counterexample to DCSH (^). Although the functions appear to be different, in reality the 

functions they had used were related with each other. The one that has been used by 

Wegner and Voight was an extended version of the one that has been used by Sasao and 

Butler, and this extension has been obtained by ANDing the function with one more 

variable. Later, it is going to be proved that these functions are related each other. 

As mentioned earlier, in this chapter, the important result for us is the failure of 

this hypothesis rather than its success. This failure leads us to a new class of functions 

called orthodox functions. 

As it is explained earlier DCSH (^) expresses that; 

( ) ( )gMSOPfMSOPfMSOP ::: ττ , where the literals of f and g are disjoint 

from each other. Although it seems reasonable to obtain the MSOP for by 

simplifying f and g separately and forming a MSOP for function 

g∧

gf ∧  by applying the 

law of distributivity, the result of the computation does not give us the exact MSOP for 

in all cases. gf ∧

To prove this, use Sasao and Butler’s [1] counterexample, since it is the simplest 

counterexample. As shown in Figure 15, this counterexample is a 4-variable function 
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with 6 PIs (one of which, yw, is not shown). Three of the six are essential PIs (denoted 

with dashed and thick lines) and the rest are non-essential PIs (denoted thin and solid 

lines). To be able to cover all the minterms of the function f, we need all the essential PIs 

and 2 of the non-essential   PIs therefore, ( ) 5: =fMSOPτ . If   we   consider   these 5 

PIs, we can represent the function f as follows; 

)() 41423 xxxx ++(),,,( 213213214321 xxxxxxxxxxxxxf ++= . The first pair of 

parenthesis encloses the essential PIs and the second encloses 2 of the 3 non-essential 

PIs.  

Now, consider the function , where =f (X) f (Y). Function  is an 8-

variable function that is obtained by simply ANDing two copies of the function using two 

different sets of variables for multiplier. Since 

2f 2f 2f

),,,()( 4321 xxxxfXf =  has 5 PIs,    

DCSH (^) suggests there are 25 PIs for the MSOP of function . 2f

 

 

 
 
 
 
 
 
 
 
 
 

Figure 15.   4-variable counterexample. 
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A sum of product expression can be obtained by applying distributivity, as 

follows  

),,,(),,,()()( 43214321
2 yyyyfxxxxfYfXff ==   

     ,A= [1] ),(),()( YXCYXBYX ∨∨
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where, A(X,Y) is the product of the PIs that are essential in both function f (X) and f (Y), 

B(X, Y) is the product of one essential and one non-essential PI,  C(X, Y) is the product of 

PIs that are non-essential in both functions. 

321321321321321321321321

321321321321321321321321321321),(

yyyxxxyyyxxxyyyxxxyyyxxx

yyyxxxyyyxxxyyyxxxyyyxxxyyyxxxYXA

∨∨∨∨

∨∨∨∨=

321413214132141321423214232142

13214232141321423214132142321),(

yyyxxyyyxxyyyxxyyyxxyyyxxyyyxx

yxxxyyxxxyyxxxyyxxxyyxxxyyxxxYXB

∨∨∨∨∨∨

∨∨∨∨∨=

4141424141424242),( yyxxyyxxyyxxyyxxYX ∨∨∨=

4y

 C [1]. 

 It is obvious that, A (X, Y) ∨ B (X, Y) ∨ C (X, Y) gives a total of 25 PIs as expected. 

However,  can be represented using only 24 PIs instead of 25, where C (X,Y) is 

replaced by  and A (X, Y), B (X, Y) remain same. This 

new SOP for can be verified to be an MSOP by Espresso. This is a counterexample to 

DHCP. It shows that decomposing a function into subfunctions on disjoint sets of 

variables (AND disjoint bi-decomposition), minimizing the two SOP’s separately and 

applying the law of distributivity does not always yield an MSOP.  

2f

3x

f

41414242434 yyxxyyxxyyx ∨∨

2

This counterexample’s result leads us a new class of functions, which always 

yields the MSOP when we apply DHCP (^), called orthodox functions. Recent researches 

that done by Sasao and Butler [1] show all symmetric functions, functions with three or 

fewer variables, all unate functions, many benchmark functions and few random 

functions are included in this new class. 

A function is an orthodox function, if and only if the number of PIs in the 

MSOP representation of the function is equal to the number of minterms in its 

maximal independent set. Algebraically this can be expressed as; 

)(Xf

)(Xf

( ) ( ffMSOP )ητ =: . 

 

B.  SAMPLE ORTHODOX FUNCTIONS 

Now, different classes of orthodox functions are demonstrated.  

• The orthodox function f, where 133221321 ),,( xxxxxxxxxf ∨∨=  belongs 

to the three or fewer variables subclass. This function is orthodox, 
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since ( ) ( ) 3: == ffMSOP ητ . In Figure 16, the minterms that belong to 

the maximum independent set of minterms are marked by   , and circled 

minterms are the PIs of the MSOP. Also, for this example, it is interesting 

that there is another maximum independent set of minterms and another 

MSOP.  

( ): =fMSOPτ
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Figure 16.   An orthodox function that belongs to the three or fewer variables subclass. 
 
 

• The next orthodox function f, where  

belongs to the unate functions subclass. This function is an orthodox 

function, since

43214321 ),,,( xxxxxxxxf ∨=

( ) 2=fη . In Figure 17 the minterms marked 

by    are the ones that belong to the maximum independent set of 

minterms, and circled minterms are the PIs that belong to the MSOP. 
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Figure 17.   An orthodox function that belongs to the unate function subclass. 

35 



 
 
 

• Third and the last example orthodox function f, where 

432143214321

432143214321432143214321 ),,,(

xxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxf

++

++++=
 

belongs to the symmetric functions subclass. This function is an orthodox 

function, since ( ) ( ) 8: == ffMSOP ητ . In Figure 18 the minterms 

marked by    are the ones that belong to the maximum independent set of 

minterms, and circled minterms are the PIs that belong to the MSOP.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.   An orthodox function that belongs to symmetric function subclass. 
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C.  THEOREMS AND OBSERVATIONS 

Orthodox functions are new concept. Therefore, there are not so many theorems 

related with this type of function. The known theorems are the ones that had been derived 

by Sasao and Butler [1], and these theorems focus more on the determination of the 

orthodox functions than on their specific properties. 

In the following paragraphs, the known theorems of the orthodox functions will 

be discussed and, in the experimental results chapter, new observations and conjectures 

related with this new class of functions will introduced. 
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1.  Theorem 1 

Let functions f (X) and g (Y) be orthodox functions. If variable subsets X and Y 

are disjoint, then the function f (X) g (Y), is also an orthodox function [1]. 

Consider the function f, where 212121 ),( xxxxxxf +=  and function g, 

where . The function z, which is obtained by the logical AND of functions f 

and g, can be represented as 

121 ),( yyyg =

121121 yxxyxx +2121 ),,,( yyxxz =

( )
 and this function also is an 

orthodox function, since ( ): 2== ffMSOP ητ . Figure 19 shows the Karnaugh map 

representations of the functions.  

 

2.  Theorem 2 

Let functions f (X) and g (X) be NP-equivalent. f is an orthodox function  if and 

only if g is orthodox [1]. 

The proof of this theorem is straightforward. Since the NP-equivalent functions 

are obtained from the same subset of variables’ permutation and complementation, we 

can easily declare that the MSOP of can be formed from , by a suitable 

complementation and permutation of variables that belong to function . The 

converse of the case is also true. Therefore, if  has α independent minterms, so 

does function . Similarly the MSOP of the f and g have the same number of PI’s. 

)(Xf )(Xg

)(Xg

)(Xg

)(Xf

Consider the functions f and g, where 21)( xxXf += , 21)( xxXg += . Function g 

is obtained by permutation of the variables of function f. Since both representations are 

the MSOP representations of the functions, we do not need any further simplifications. 

Now, if we consider the function f, we can observe, it has 2 independent minterms. So 

does function g from the previous paragraph’s discussion; they both have 2 PIs in their 

MSOP representation, and so ( ) ( ) ( ) ( ) 2: =: === fgMSOPffMSOP ητητ . 
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    (c) 
Figure 19.   Karnaugh map representations. 

 
 
 

3.  Theorem 3 

If f’s MSOP representation consists of only essential PIs then f is an orthodox 

function [1]. 

To prove this theorem, it is sufficient to consider distinguished minterms. This 

concept suggests that, each essential PI covers a minterm that is covered by only that PI, 

which means that in the maximum independent set of minterms, we will have at least the 

number of essential PIs many independent minterms so if we have only essential PIs for a 

function this function is an orthodox function since, ( ) ( )ffMSOP ητ =: .  
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Consider f, where function 3213213214321 ),,,( xxxxxxxxxxxxxf ++= . This 

function consists of only essential PIs, as can be seen from its Karnaugh map 

representation in Figure 20. So, each essential PI covers a distinguished minterm, and we 

have 3 distinguished minterms and 3 essential PIs, which perfectly matches the definition 

of orthodox functions. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 20.   Karnaugh map representation of function f (the minterms that denoted by “  ” are 
the distinguished minterms). 
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D. CONCLUSIONS OF THE CHAPTER 

Orthodox functions, their known properties, and disjoint computation scheme 

hypothesis for logical AND and OR operations addressed in this chapter. After the 

introduction of the orthodox functions three example orthodox functions were 

demonstrated in this chapter also. The non-orthodox function concept addressed in 

Chapter IV of this thesis, same chapter also proposes an algorithm, Algorithm 3, to create 

non-orthodox functions.  
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IV.  NON-ORTHODOX FUNCTIONS 

It has been shown experimentally that the fraction of n-variable functions that are 

orthodox approaches 0 as n approaches infinity [1]. Figure 21 depicts the orthodox and 

non-orthodox functions as disjoint subsets of all functions. 

 
 

Non-orthodox functions: 
-remaining functions 

Orthodox functions: 
-all symmetric functions 
-unate functions 
-many benchmarkfunctions 
-all functions with 3 or fewer 
variables 
-few random functions 

All functions  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 21.   Set of the all functions divided among orthodox and non-orthodox functions. 
 
 

People may think that the number of orthodox functions is greater than the 

number of non-orthodox functions because, among the functions that people can 

manipulate without help of computer, the number of the functions that are orthodox is 

greater than the number that are non-orthodox. This is true of 4-variable functions, 5-

variable functions and 6-variable functions; the percentage of the non-orthodox functions 

is small in these types of functions. Table 5 can give us a quick idea about the percentage 

of the non-orthodox functions that have 4 to 10-variables [1].  
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Number of Variables Percentage of Non-
orthodox functions 

(%) 
4 0.4 
5 1 
6 4 
7 13 
8 34 
9 81 
10 100 

Table 5.   Percentage of the Non-orthodox functions within 4 to 10-variable functions 
 

After this introduction, non-orthodox functions discussion may proceed with the 

research results of Sasao and Butler [1]. 

 

A.  FOUR-VARIABLE NON-ORTHODOX FUNCTIONS 
There are 65536 functions of 4-variables, 216, which can be divided into 402 NP-

equivalent sets. It has been verified that only 4 NP-equivalence sets are non-orthodox. A 

representative from each NP- equivalence class can be obtained by substituting 1s and 0s 

for the don’t cares in Figure 22. Each representative function is NP-equivalent to 63 other 

functions. As a result, we have totally 64*4 = 256 non-orthodox functions in 4-variable 

functions, which gives us the percentage of 0.4% shown in Table 5[1]. 
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Figure 22.   Four variables non-orthodox functions. 
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1. Properties of the 4-Variable Non-orthodox Functions 

As explained earlier, there are 4 NP-equivalent classes among the 4-variable 

functions and representatives of each class can be obtained by substituting 1s and 0s in 

the don’t cares in the Figure 22. 

Therefore, one class representative has two zeros in minterms 

and 1110 and can be denoted as . Another class representative has 

a 1 in minterm , a 0 in minterm 

00004321 =xxxx

1x

00NP

210000432 =xxx 111043 =xx

21xx

xx

10NP

 and can be denoted 

as . Still another class representative has a 0 in minterm , a 1 in 

minterm  and can be denoted as . The last class representative has 

two 1s in minterms  and 1110 and can be denoted as .  

01NP

321 xxxx

000043 =xx

11NP

11104 =

4321 =xxxx 0000

It has been verified by Sasao and Butler [1] that when 4-variable non-orthodox 

functions are squared by using disjoint variable sets they provide less PIs in the MSOP of 

resultant function then expected. So 4-variable non-orthodox functions have the property 

that .  ( ) ( )22 :: fMSOPfMSOP ττ <

The experiments with the NP-equivalence sets , ,  and  have 

verified that when the members of these classes logically ANDed with each other by 

using disjoint variable sets the resultant functions yield less PIs than expected from the 

DCSH (∧). So, it   can     be   stated    that   4-variable    non-orthodox     functions also 

have the property that 

00NP 01NP 10NP 11NP

( ) ( ) ( )gffMSOP :: MSOPMSOP :g τττ <∧ , 

where  and the difference is always 1. { 11100100 ,,,, NPNPNPNPgf ∈ }

 

B.  CREATING A NON-ORTHODOX FUNCTION 
Of the five variables functions, it is estimated that 1% of the total are non-

orthodox. The only known 5-variable non-orthodox function is the one proposed by 

Voight and Wegner [5] (and the others that can be derived from it by a permutation and 

complementation of the variables of the proposed one). This function is closely related to 

the known examples of the 4-variable non-orthodox functions. This is going to be 

demonstrated later in this thesis. 
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But, it is known from experiments that non-orthodox functions represent the vast 

majority of functions with nine or more variables. Thus, there is a gap in our 

understanding of these functions. It is the goal of this section to fill this gap. 

Below is a procedure by which one can create a non-orthodox function with 

desired number of variables. To understand this procedure, consider the following. 

Consider the 4-variable non-orthodox functions representative, Figure 23 is going 

to be its Karnaugh map representation. It can be observed that the non-essential PIs of the 

function f give the non-orthodox property to the function. To understand how this 

happens, consider the following. 

 

1.  Discussion for Non-orthodox Functions 
It is explained that the non-orthodox function property is achieved by the help of 

the non-essential PIs. Consider the definition of the non-orthodox function, the only 

requirement is, a difference between the number of the prime implicants of the sum of 

products representation of the function and the number of the elements of the maximal 

independent minterm set. Also, if one considers the definitions of the non-essential prime 

implicants and independent minterms set, it is obvious that the required difference can 

only be obtained from the non-essential prime implicants since every essential prime 

implicant has a minterm that is counted in ( )fη . 

In the case of non-essential prime implicants, each minterm of the prime 

implicant can be covered by more than one non-essential or essential prime implicant. So, 

under certain conditions, it is impossible to find an independent minterm from these 

prime implicants, e.g. in Figure 23, there are 3 non-essential PIs in the Karnaugh map 

representation of the function, and only 1 minterm among these 3 PIs’ minterms is 

counted in ( )fη . 

Let’s continue the examination of the 4-variable non-orthodox function’s 

Karnaugh map representation. Consider the non-essential prime implicants. If the 

minterms associated with them are isolated from the whole function, the Karnaugh map 
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shown in Figure 24 is going to be obtained, which  shows the middle two rows of the 

Karnaugh map in Figure 23. 
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Figure 23.   4-variable non-orthodox function. Dashed lines show the non-essential PIs, solid 
lines show essential PIs. 
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Figure 24.   Middle two rows of Figure 21. 
 

Therefore, eliminating the minterms in Figure 23 that are covered by only 

essential PIs, yields the minterms in Figure 24. The minterms in Figure 24 marked with   

“  “ form a majority function and the non-essential PIs that are created by the minterms of 

this majority function determine the difference between the number of the PIs in the 

MSOP of f, ( fMSOP : )τ  and the number of the minterms in the maximal independent 

minterms set of f, ( )fη , depending on the number of the PIs that needed in the MSOP of f 

to cover all the minterms. Also, note that isolating the minterms that are associated only 

with essential PIs of the 4-variable non-orthodox function yields a new function with 3-
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variables, where this 3-variable function includes the majority function that is formed by 

the marked minterms of the Figure 24. 

 

2.  Steps of the Algorithm 3 
After this discussion, one can consider that there is a common point in the Non-

Orthodox function’s Karnaugh Map representation, and it can be used to produce new 

Non-Orthodox functions with more variables. Consider a method for producing non-

Orthodox functions by using this idea: 

Algorithm 3: 

1. Determining the number of variables of the non-orthodox function, 

n, that is going to be constructed, where n is even. 

Subtract 1 from n, to determine the number of variables of the function 

that holds the majority function as explained in the previous section.  

2. Determine the weak minterms of the function (function that we 

determine the number of the variables in the previous step), to find the minterms of the 

essential PIs of the newly generated non-orthodox function. These are minterms that are 

covered by at least one essential and at least one non-essential PI. For example, consider 

Figures 23 and 24, eliminating the minterms that are covered only by essential PIs 

accomplished the subtracting 1 from the variable number of the non-orthodox function 

step. Thus, we obtained the function that holds the majority function (discussed in the 

previous part). So that, the minterms that unmarked in Figure 24 are the weak minterms. 

a. To create minterms that belong to the essential PIs of the 

non-orthodox function that wanted to be constructed, append a dash to the end of each 

weak minterm. Then, expand it by substituting 0 and 1 for dash; i.e. is a 

weak minterm in Figure 24, appending a dash yields 001-, expanding it yields 0010 and 

0011, 4-variable minterms of the function f shown in Figure 23.  

001321 =xxx

 3. Finally, to obtain the minterms that are covered by the non-

essential PIs of the non-orthodox function that wanted to be constructed, the strong 

minterms should be determined. And, opposite of the weak minterms appending a 1 at the 
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end of these minterms is sufficient to expand them. For example, consider the minterm 

110 in Figure 24. It is a strong minterm, adding a 1 to the end of it yields 1101. This 

minterm is covered by one of the non-essential PI of non-orthodox function, as shown in 

Figure 23.  

Consider how Algorithm 3 can be used to create a 6-variable non-orthodox 

function.  

• Subtract 1 from the number of variables in the non-orthodox function to 

determine the number of the variables of the function that is going to hold 

the majority function. 

To obtain the minterms covered by the essential PIs of the non-orthodox function, 

that is wanted to be constructed by using this algorithm; 

• Determine the weak minterms of the 5-variable function, in running 

example, a 5-variable function is considered, so no weak minterm can 

have more than 2 1s in it. Table 6 is a suitable way to represent the weak 

minterms. 

• In Table 6, each row corresponds to a set of weak minterms. For example, 

consider the first row of Table 6. Substitute 1s and 0s for dashes such that 

there are no more than 2 1s. This yields the weak minterms 10000, 11000, 

10100, 10010 and 10001. 

x1 x2 x3 x4 x5 

1 - - - - 

0 1 - - - 

0 0 1 - - 

0 0 0 1 - 

0 0 0 0 1 

Table 6.   The weak minterms. 
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• Next, append dashes to each weak minterm and expand it. For example, 

consider the weak minterms that obtained in previous step, adding dashes 

to the end of their cube notations and substituting 1s and 0s for these 

dashes yields following 6-variable minterms; 100000-100001, 110000-

110001, 101000-101001, 100100-100101, 100010-100011. To find all the 

minterms that covered by the essential PIs of the 6-variable non-orthodox 

function that wanted to be created, apply the same steps that were applied 

to each row of Table 6. Table 8 shows all the minterms that covered by 

essential PIs of the 6-varable non-orthodox function. 

To obtain the minterms that are covered by the non-essential PIs of the non-

orthodox function that wanted to be generated; 

• Determine the strong minterms of the 5-variable function. Table 7 shows 

the strong minterms of the 5-variable function. 

• On the contrary to weak minterms, append only 1 to the cube notations of 

the strong minterms. This yields the 6-variable minterms that covered by 

the non-essential PIs of the non-orthodox function we want to generate. 

The first 5 columns of the Table 8 show the 5-variable strong minterms, 

Table 8 shows the the minterms that covered by non-essential PIs of the 

non-orthodox function.  
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x1 x2 x3 x4 x5 x6 

0 1 0 1 1 1 

0 1 1 1 0 1 

0 1 1 1 1 1 

0 0 1 1 1 1 

0 1 1 0 1 1 

1 1 0 0 1 1 

1 1 1 0 0 1 

1 1 0 1 0 1 

1 1 0 1 1 1 

1 1 1 1 0 1 

1 1 1 1 1 1 

1 1 1 0 1 1 

1 0 0 1 1 1 

1 0 1 1 1 1 

1 0 1 1 0 1 

1 0 1 0 1 1 

Table 7.   The strong minterms. 
 

After applying the above discussion to the weak minterms of the 5-variable 

function, the minterms shown in Table 8 were obtained as the minterms of the essential 

PIs of the 6-variable non-orthodox function. 
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# of the row of 
Table 6 x1 x2 x3 x4 x5 x6 

From row 1 1 0 0 0 0 0/1 
From row 1 1 1 0 0 0 0/1 
From row 1 1 0 1 0 0 0/1 
From row 1 1 0 0 1 0 0/1 
From row 1 1 0 0 0 1 0/1 
From row 2 0 1 0 0 0 0/1 
From row 2 0 1 1 0 0 0/1 
From row 2 0 1 0 1 0 0/1 
From row 2 0 1 0 0 1 0/1 
From row 3 0 0 1 0 0 0/1 
From row 3 0 0 1 1 0 0/1 
From row 3 0 0 1 0 1 0/1 
From row 4 0 0 0 1 0 0/1 
From row 4 0 0 0 1 1 0/1 
From row 5 0 0 0 0 1 0/1 

Table 8.   All the minterms that belong to the essential PIs of the 6-variable non-orthodox 
function that is generated by Algorithm 1. 

 
 

As it is seen from Tables 7 and 8 there are a total of 46 minterms of the non-

orthodox function.  

 

3.  Verifying the Non-orthodox Function Property 
After specifying all minterms of the function, it is necessary to determine whether 

the created function has the non-orthodox property or not. To make this decision, it is 

needed to be known the number of the PIs in generated function’s minimum sum of 

products representation and number of the minterms in its maximum independent set of 

minterms. Place all the minterms that we determined into a Karnaugh map to be able to 

find the number of the minterms in the independent minterms set, ( )fη  and ( )fMSOP :τ .  

Figure 25 shows the Karnaugh map representation of function produced by 

Algorithm 3. Minimizing this function yields a total 13 PIs; 10 essential and 3 non-

essential. Espresso was used for the minimization. During the minimization –Dexact flag 

was used to obtain an exact expression for MSOP. Therefore ( ) 13: =fMSOPτ . 
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 To determine the independent minterms, consider the essential PIs and the non-

essential PIs. For each essential PI, there is 1 independent minterm, and overall essential 

PIs is 10. If we consider the non-essential PIs, there is only 1 independent minterm. 

Overall, there are 11 independent minterms and so ( ) 11=fη . This is shown by a “x” in 

Figure 25, and all the independent minterms that come from essential PIs are marked also 

by “    ”. 

Since ( ) ffMSOP ( )ητ ≠: , it can be stated that the function derived from the 

Algorithm 3 is a non-orthodox function.  

 

C. CONCLUSIONS OF THE CHAPTER 
In this chapter of this thesis, the non-orthodox function concept was introduced to 

the reader. To do this the known simplest non-orthodox functions, 4-variable non-

orthodox functions were used. Also, an algorithm, Algorithm 3, was proposed in this 

chapter. This algorithm constructs non-orthodox functions with 2n-variables, where n is 

even. In the “Creating a non-orthodox function” part of the thesis, Algorithm 3 is 

completely discussed and correctness of the results of this algorithm is also verified by 

evaluating the function that is created by Algorithm 3 in respect to official non-orthodox 

function definition. Chapter V, the following chapter, is the part of this thesis that 

presents the results of the experinmental research done with non-orthodox and orthodox 

functions.  
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Figure 25.   6-variable non-orthodox function.
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V.  EXPERIMENTAL RESULTS 

Experiments were conducted using Espresso and 6 java programs. The goal of 

these experiments is to increase our knowledge of orthodox and non-orthodox functions.  

Because it is a basic tool of experiments, Espresso has been discussed in detail in 

the introduction. In the following sections, brief explanations of the other software, all of 

which are java programs, are given. These are mostly used to create input files for 

Espresso (except the YaratNon.java). YaratNon.java, on the other hand, is used to create 

the representative function of the non-orthodox functions with a given number of 

variables. It uses the algorithm discussed in Chapter 3. 

 

A. YARATNON.JAVA 
This program is used to obtain the representatives of families of non-orthodox 

functions with the given number of variables. The number of variables must be even 

number due to the algorithm of the program. This program has two inputs; the name of 

the output file, which has the extension “.es”, and number of the variables of the majority 

function, which is an odd number. This program implements the Algorithm 1. 

The java source code of the YaratNon.java is shown in Appendix A. 

 

B. FAMILY.JAVA 

This program creates a family of functions from one representative function 

produced by YaratNon.java. It determines the minterms that can be treated as don’t cares. 

To accomplish this task, the program obtains the minterms from the user that are 

potentially don’t cares. Then, it creates new functions by inserting the potential don’t 

cares into the original non-orthodox function. Each newly created function is written to a 

new file that has an extension “.es”. Family.java uses the On-set representation while 

writing the functions into different files, because these files are used as input files for 

Espresso and Espresso uses the On-set representation as default. 
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 Inputs to the program include; the name of the original non-orthodox function’s 

file, the file created by YaratNon.java, each potential don’t care minterm that the user 

wants to investigate and the output file name containing  the newly created functions.  

For example, if you have a representative function for 6-variable non-orthodox 

functions, and you want to specify 2 minterms as don’t cares, Family.java will provide 

you 4 new functions in 4 different files. Each file has the same name with a different 

number appended; i.e let the name of the output file entered be “experience.es”. Then 

“experience0.es” will be given to the first function, “experience1.es” the second, up to 3. 

The java source code of the Family.java is shown in Appendix B. 

 

C. SONKARAR.JAVA 
Family.java’s task is to create a number of input files for Espresso, depending on 

the number of minterms specified as don’t cares. Espresso creates an output file with an 

extension “.out” for each function that has been minimized by it and SonKarar.java’s task 

is to read each of these output files and determine whether the function is an orthodox 

function or non-orthodox function. To make this decision, SonKarar.java uses simple 

logic, described as follows. 

• SonKarar.java goes thorough the Espresso output file of each function, 

and checks the PIs. SonKarar.java controls the cube notations of each PI , 

increments its counter whenever it encounters a PI that has a 1 at the very 

last literal of its cube notation. After SonKarar.java done either one of the 

two cases holds: 

• Case 1: Function’s MSOP may include more that 1 PI such that their cube 

notations have a 1 for the last literal, then the function that is under test is 

a non-orthodox function.    

• Case 2: Function’s MSOP may include exactly 1 PI such that its cube 

notation has a 1 for the last literal, then the function under test is an 

orthodox function.  
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Although it looks like a simple logic, the algorithm discussed above should be 

proved since, decisions taken by SonKarar.java directly affects the experimental results 

of this chapter. Following is the proof of the above algorithm; 

It is known from Chapter III that Algorithm 3 is used to create the basic n-

variable non-orthodox function, where n is even. Let the function created by Algorithm 3 

be f, where f can be written as follows; 

( ) nnnn xxxxxSf 1211
2

,...,2,1
... −

−
∨∨∨∨








= . 

Let MI be a maximal independent set of f1. Among the minterms in the 

subfunction f1 of f, where f1 is; 

( 1,,...,, 121
22

,...,2
2

,1
2

1 −
+++

= nnnnn xxxSf ), where n is the number of the variables of f. 

MI may only have 1 minterm. 

f1 consists of minterms that all belong to the non-essential PIs of function f. These 

minterms can be covered by 5 non-essential PIs as shown in Figure 25. Table 9 shows the 

cube notations of these non-essential PIs, and also observe from the same table that all 

PIs of function f1 has a 1 in their last literal of cube notations. 

 

1x  2x 3x 4x 5x 6x

1 - - - - 1 

- 1 - - - 1 

- - 1 - - 1 

- - - 1 - 1 

- - - - 1 1 

Table 9.   Cube notations of the non-essential PIs of f. 
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Choose two independent minterms among these 5 PIs, e.g. 001111 and 110101. 

From Table 9, it can be observed that the chosen minterms are both covered by 4th non-

essential PI. If the minterms belong to f1 are checked, it can be seen that there is no 

minterm that is covered by only 1 PI. Thus, no more than 1 minterm can be picked as an 

independent minterm among these 16 minterms. 

It follows that, if the function under test has more than 1 PI that has a 1 at the last 

literal of its cube notation, then the number of the minterms in its independent minterms 

set is less than the number of the PIs in its MSOP. Thus, this function is a non-orthodox 

function. 

Also, the same computer program can be used to determine the types of functions 

created by Family.java because, Family.java creates functions by substituting 1s and 0s to 

the minterms provided by the user. The user cannot pick minterms from the right 

Karnaugh map of Figure 25, since there is only one minterm that is not assigned a 1 in 

this Karnaugh map, and to assign a 1 to this minterm causes to f1 to be 1. And, this makes 

the n-variable function f a (n-1)-variable function that consists of only essential PIs. As 

mentioned in Chapter III, this type of functions is always orthodox. 

Thus, in the usage of Family.java, the user has to provide minterm/minterms to 

the program from the left Karnaugh map in Figure 25. It shows the essential PIs of the 

function f, and the insertion of new minterms in this Karnaugh map will not affect the PIs 

(circles) of left Karnaugh map in Figure 25. That is, during the minimization of the 

functions, the biggest circles should be picked to cover the minterms to be able to remove 

as many literals as possible from the PIs of the MSOPs, and the biggest 5 circles (PIs) are 

listed in Table 9. No matter how many uncovered minterms remained in the right 

Karnaugh map of Figure 25, at least one of these circles we should be picked. It follows 

that the same idea used in YaratNon.java can be used, to determine the types of the 

functions that are created by Family.java.  

The java source code of the SonKarar.java is shown in Appendix C. 
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D. CARPIMTABLOSU.JAVA 

This program’s task is to square a given non-orthodox function. To perform the 

square operation, Carpimtablosu.java logically ANDs 2 copies of the given function by 

using 2 disjoint variable sets for each copy. It gets the file name of the original function 

that we wish to square and an output file name for the squared functions from the user. 

(CarpimTablosu.java uses the given names as bases and appends a counter to these bases 

to point the proper function.)  

Let the base name for the total 16 non-orthodox functions be “birol”, and let the 

base name for the squared version of these functions be “filiz”. Then, the program reads 

the files birol0.es, birol1.es and so forth up to birol15.es, squares each of the read file and 

names them filiz0.es, filiz1.es respectively. 

The java source code of the CarpimTablosu.java is shown in Appendix D. 

 

E. COMPARE.JAVA 

Compare.java attempts to answer the question “Are there any AND bi-

decomposable functions in which the application of the law of distributivity to the MSOPs 

of component functions produces an SOP with many more PIs than in the MSOP?” [1]. 

To do this, Compare.java goes through Espresso’s output files and gets the 

number of the PIs in the MSOPs of the functions that are created by CarpimTablosu.java 

and Family.java. Compare.java squares the PIs that belong to the MSOP of the functions 

created by Family.java, to obtain the number of the PIs in the MSOP of when the law 

of distributivity is applied. Then, Compare.java subtracts the resultant number from the 

PIs number taken from the Espresso output files for the functions created by 

CarpimTablosu.java. Compare.java writes the results of the subtractions to an output file. 

2f

The java source code of the Compare.java is in Appendix E. 

 

F. ESPRESSO2.JAVA 
Espresso2.java is used to compute the resultant function of the logical ANDing 

operation between 2 any n-variable function. 
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Espresso2.java gets the input functions as On-sets from the user and also provides 

the resultant function with On-set representation. Results of this program can used as 

input files for Espresso. Espresso2.java also gets the name of the output file to write the 

resultant function. 

The java source code of the Espresso2.java is shown in Appendix F. 

  

G. USAGE OF THE JAVA PROGRAMS AND ESPRESSO IN 
EXPERIMENTS 

To conduct experiments with orthodox/non-orthodox functions, programs 

explained above must be used in a special order, because of the fact that the result files of 

a program are going to be the input files of another program.  

Figure 26 and 27 depicts the usages of the programs for different kinds of 

experiments. To be able to determine the representatives of the non-orthodox functions’ 

NP-equivalence sets, the programs must be used in the order that is depicted by Figure 

26. Following is a brief explanation of the figure; 

• Create the base n-variable non-orthodox function using YaratNon.java. 

• The output file of the YaratNon.java becomes the input of the Family.java. 

Family.java substitutes 1s and 0s for the minterms that are provided by 

user. Then, it inserts the newly created minterms to the minterms set of the 

n-variable base non-orthodox function to create new functions.  

• Espresso minimizes all the functions that are created by Family.java. 

Espresso writes the results into different output files for each function. 

• Output files of Espresso become the input files for SonKarar.java. 

SonKarar.java goes thorough the output files to determine whether there is 

an orthodox function in the functions that are created by Family.java or 

not. If there is no orthodox function, then the provided set of minterms can 

be treated as don’t cares.  Otherwise, the last provided minterm are 

excluded from the set.  
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• The user continues to provide the minterms until there is no minterm to be 

checked. 

Figure 27 depicts the usage of the programs to determine the penalty of 

minimization a bi-decomposable function by applying law of distributivity and 

minimizing without decomposing the function into subfunctions. Following is a brief 

explanation of the flow chart that is depicted in the Figure 27. 

• Result files (each one represents a function) of Family.java become the 

inputs of the CarpimTablosu.java, when it is decided that they are non-

orthodox functions. 

• CarpimTablosu.java squares each function and writes the results to 

different files for each function. These files become the input files for 

Espresso.  

• Espresso minimizes all the squared functions. 

• Compare.java finds the difference between ( )2: fMSOPτ  and 

by using the output files of Espresso, as explained in part E.  ( 2MSOPτ )

To be able to verify the correctness of the Java programs, they were used to 

conduct experiments with all 4-variable non-orthodox functions and the results were 

compared with the results generated by Sasao and Butler’s computer program [1]. This 

comparison showed that Java programs that developed for the experimental research of 

this thesis worked correctly. Then, exploration of 6-variable non-orthodox functions 

started. During the experiments, 924,288 6-variable functions have been created. The 

experiments were conducted over a period of 4 weeks. The analysis of the generated data 

took 5 weeks. 
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-Include the last tried minterm to the 
current set 
-Go to Family.java 
-Continue to follow the same pattern 

??

If substituting 1and 0 for current 
minterm created one or more 
Orthodox function/functions 

SonKarar.java  
Goes through the PIs of the 
output files of Espresso. 
Determines the type of the 
function 

Output files of 
Espresso 
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Figure 26.   Usage of the java programs to determine th
 

60 
If substituting 1and 0 for current 
minterm did not create Orthodox
function/functions 
-Exclude the current minterm 
from the minterm set 
-Go to Family.java 
-Continue to follow same 
pattern  

e 6-variable non-orthodox functions. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

minterms 

( )2: fMSOPτ
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Compare.java  
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functions created by 
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Family.java 
&CarpimTablosu.java 
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Result file of 
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and also Espresso 
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Figure 27.   Usage of the java programs to determine the penalty between minimization with 
law of distributivity and conventional minimization. 
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H. OBSERVATIONS OBTAINED FROM EXPERIMENTS 

The experimental analysis of the non-orthodox and orthodox functions by using 

the above programs and Espresso produced the following results; 

 

1. Lemma 1 

Let X be a set of variables and let y be a variable such that Xy ∉ . Then is 

a non-orthodox (orthodox) function if and only if is non-orthodox (orthodox). 

)(Xyf

)(Xf

For example, consider the function f, 

where 42433213213214321 ),,,( xxxxxxxxxxxxxxxxxf ++++=

( ) 5:

. The function f is 

non-orthodox function since =fMSOPτ  and ( ) 4=fη  as shown in Figure 29. 

Logically ANDing function f with literal y, where { }4321 ,,, xxxxX =  and , yields 

resultant function 

Xy ∉

yx42xyxxyxxxyxxxyxxxyXf 43321321321)( ++++=

( ) 5)(:

. Figure 28 

shows the Karnaugh map representation of the resultant function. It can be observed from 

the Figure 28 =yXfMSOPτ and ( ) 4)( =yXfη . The minterms marked with “  ” 

in Figure 28 are the ones that belong to the maximum independent minterms set, and the 

circled minterms represent the PIs of the resultant function. 

To prove Lemma 1, following idea can be used. A PI, denoted as p, of function 

has the property that )(Xf py

)

 is a PI of . Similarly, a PI of has the form 

py, where p is a PI of . As a result, it is obvious that logically ANDing a function 

with a literal that does not belong to its variable set, is nothing more than  increasing the 

number of variables of the original function by 1, and all the properties of the function, 

like 

yXf )( yXf )(

(Xf

( )fMSOP :τ and ( f )η remain unchanged. 
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Figure 28.   Karnaugh map representation of  yXf )( .
 
 

2.  Lemma 2 

Let X be a set of variables and let y be a variable such that . Then 

is a non-orthodox function if and only if is non-orthodox. 

Xy ∉

)(Xfy ∨ )(Xf

To demonstrate this lemma, Lemma 1’s example function has been used. Once 

again, function f has the non-orthodox property since ( ) 5: =fMSOPτ and ( ) 4=fη . 

Figure 29 depicts the original function ’s Karnaugh map. The minterms marked by    

belong to the maximum independent minterms set, and the circled minterms show the PIs 

that belong to MSOP of function f. 

)(Xf
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Figure 29.   Karnaugh map representation of 
42433213213214321 ),,,( xxxxxxxxxxxxxxxxxf ++++= . 
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Logically ORing the function f with the literal y, where Xy ∉ , yields following 

function, that is; yxxxxxxxxxxxyXf ++++=∨ 43321321321)( xx +42 , which can be 

represented as we shown in Figure 30. Again, the minterms that are marked by “   “ 

belong to the maximum independent minterms set, and the circled minterms show the 

MSOP of function f. 

As it can be seen from Figure 30, ( ) 6)(: =∨ yXfMSOPτ  and ( ) 5)( =∨ yXfη . 

Thus, the resultant function is also a non-orthodox function. 

To prove Lemma 2, the idea used in Lemma 1 has been used. A PI, denoted as p, 

of function f has the property that p is a PI of . Similarly a PI of as the 

form

yf ∨ yXf ∨)( h

yp ∨ , where p is a PI of . So, it can be observed that to logically OR a 

function with a literal that does not belong to its variable set means to increase the 

number of variables of the original function and add 1 more essential PI to the MSOP 

representation of it.   

)f (X
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Figure 30.   Karnaugh map representation of   yXf ∨)( .
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The converse also holds. That is, if the given function has the orthodox property, 

the resultant function will also hold the orthodox function property when it is logically 

ORed with a literal, where the literal does not belong to the variable set of the function. 

 

3.  Lemma 3  

Let X be a set of variables and let y be a variable such that . Then 

is a non-orthodox function if is non-orthodox. 

Xy ∉

yXf ⊕)( )(Xf

The proof of Lemma 3 proceeds as follows; 

Following can be written; yXfyXfyXf )()()( +=⊕ , and let p be a PI 

of . It follows that either one of the followings is true; yXf ⊕)(

1. pyXpf =)( and 0)( =yXfp or 

2. 0)( =yXpf and pyXfp =)( . 
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Thus, the PIs of yXf )(  and yXf )(

y

are disjoint. Similarly, the minterms in the 

maximal independent set of Xf ⊕)( form two disjoint subsets, one with and the 

other with . The former represents a maximal independent set of 

0=y

1=y yX )(f and the 

latter of yX )( .f  

Since is non-orthodox, the number of the PIs in its MSOP is greater than 

the number of minterms in its MIS. The same is true for

)(Xf

yXf )( . Thus, it follows that 

is non-orthodox. yXf ⊕)(

Consider following example. First, it is shown that PIs of yXf )(  and yXf )(  are 

disjoint. Let 2121 ),( xxxxf += . Logically EXORing this function with literal y, 

where , yields a function that is Xy ∉ yxxyxyxyxxz 212121 ),,( ++=

)(Xf ),,( 21 yxxz

. Figure 31 shows 

the Karnaugh map representations of and ,as it is seen from the figure 

the PIs of subset yXf )( and yXf )(  are disjoint. 
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Figure 31.   (a) Shows the PIs of the function f (X) (b) Shows the PIs of function    f (X) ⊕ y. 
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4. Lemma 4 

 The following table is obtained from the experiments. 

 

)(Xf  ) )()( YgXf ∨(Yg  where  0=∩ YX

Orthodox Orthodox Orthodox 

Orthodox Non-orthodox Non-orthodox 

Non-orthodox Orthodox Non-orthodox 

Non-orthodox Non-orthodox Non-orthodox 

Table 10.   Type of the resultant function obtained from the logical OR of two disjoint 
functions. 

 

It follows; 

)()( YgXf ∨ , where 0=∩ YX , is non-orthodox if and only if r r 

both is non-orthodox. 

)(Xf o )(Yg o

The proof of Lemma 4 proceeds as follows; 

Because , there is a one-to-one correspondence can be established 

between minterms in the maximal independent sets of and and the maximal 

independent set of . Similarly, a one-to-one correspondence can be 

established between PIs of and and PIs of . If the size of the 

maximal independent set of or  exceeds the size of the minimum sum-of-

products of or , respectively, the same will be true of . This 

proves the (if) part. The proof of the (only if) part is proved in a similar way. 

0=∩ YX

)(Xf

)(X )(Yg

)(Xf

)(Xf

)(Yg

)(Y

(f

)(Yg∨

)(Xf

(Xf

)(Yg

)(Yg

g∨

)

f )() YgX ∨

 

5. Lemma 5 

Let f be a self dual function. Then f is non-orthodox if and only if f is non-

orthodox. 

The proof of the Lemma 5 proceeds as follows. 
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For all functions f, is non-orthodox if and only if ),...,,( 21 nxxxf ),...,,( 21 nxxxf is 

non-orthodox. That is complementing variables does not affect the orthodox property of a 

function (the PIs and minterms in the maximal independent set differ only by a 

complementation of the variables). In a self-dual function, 

),...,,( 21 nxxxf = ),..., nx,( 21 xxf . Thus, it follows that is non-orthodox if 

and only if 

),...,,( 21 nxxxf

),...,,( 21 nxxxf is non-orthodox. 

The significance of Lemma 5 is that it identifies a set of functions with a special 

property. That is, for self-dual function f, either 

1. both f and f  are orthodox or 

2. both f and f are non-orthodox. 

The self dual function in Figure 13 is symmetric. Thus, it is 

orthodox. Its complement, which is also symmetric, is also orthodox. There remains the 

question of whether there exists self-dual functions that are non-orthodox. Indeed, there 

are. 

),,( 3213,2 xxxS

Consider the 5-variable function. 

),,,(),,,(),,,,( 432154321554321 xxxxhxxxxxhxxxxxxg ∨=  

where is the 4-variable counterexample that is used by Sasao and Butler 

[1] shown in Figure 15 in Chapter III. g is non-orthodox, as can be seen from Figure 33 

(a). It is shown that g is self dual by showing

),,,( 4321 xxxxh

),...,,(),...,,( 2121 nn xxxgxxxg = . First, 

 ),,,(),,,(),,,,( 432154321554321 xxxxhxxxxxhxxxxxxg ∨= (1) 

second, 

 { }{ }),,,(),,,(),,,,( 432154321554321 xxxxhxxxxxhxxxxxxg ∨∨=  

          = ),,,(),,,( 432154321555 xxxxhxxxxxhxxx ∨∨  

           ),,,(),,,( 43214321 xxxxhxxxxh∨   (2) 
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          = ),,,(),,,( 4321543215 xxxxhxxxxxhx ∨   (3). 

The last term in (2) is a consensus term. Any assignment of values to x1, x2, x3 and 

x4, that make it 1 also cause exactly one of the two middle terms in (2) to be 1. Since (2) 

and (3) are identical, we have identified a non-orthodox self dual function. 

The significance of this result is the establishment of the existence of a non-

orthodox function, whose complement is also non-orthodox.  

 

6. Observation 1    

As it is explained earlier, the counterexamples, that have been used by Voight and 

Wegner [5] in 1989 and Sasao and Butler [1] in February 2001, to prove that Disjoint 

Computation Scheme Hypothesis for logical AND does not always hold, are not totally 

different functions. In reality they are closely related to each other. The reason that leads 

us to this observation is Lemma 1. 

The 4-variable counterexample that used by Sasao and Butler [1], 

is 42433213213214321 ),,,( xxxxxxxxxxxxxxxxxf ++++= . It is part of one family of 

non-orthodox functions that has 2 don’t cares. As explained in Chapter 3, by substituting 

0s and 1s, representatives of the 4 NP-equivalent classes can be determined. To transform 

Voight and Wegner’s example to that of Sasao and Butler, substitute a 1 for don’t care in 

minterm 1110 and a 0 for don’t care in minterm 0000 in Sasao and Butler’s 

counterexample. This yields 424332132 xxxxxxxxx +++13214321 ),,,( xxxxxxxxf += . If 

we logically AND this function with x5, where x5∉ X, we obtain a 5-variable non-

orthodox function, 542 xxx+543532153215321 xxxxxxxxxxxxxxx +++ .  

Interchanging 4x with x5, yields Voight and Wegner’s counterexample; 

542543432143214321432154321 ),,,,( xxxxxxxxxxxxxxxxxxxxxxxxxxxf +++++= . 

This is shown in Figure 32. As a result, Voight and Wegner’s counterexample can 

be obtained by logically ANDing Sasao and Butler’s [1] NP01 with variable x5. 
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Figure 32.   (a) Minterms of x5 NP01 (b) Minterms of Voight and Wegner’s [4] 
counterexample. 
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7.  Observation 2    

After conducting experiments with 256 4-variable and chosen 20 5-variable, and 

20 6-variable non-orthodox functions, it has been observed that complementation of the 

non-orthodox functions yields almost always orthodox functions, results of the 

complementations are shown in Table 11. All the ones that yield non-orthodox function 

were self-dual functions and they were sharing a common point. So that, one can make an 

observation that for 4, 5 and 6-variable non-orthodox functions complementing the given 

non-orthodox function yields an orthodox function except a specific subset of self-dual 

functions.   

The following explains how a special self dual function can be constructed with 

non-orthodox function property that yields an orthodox function when it is 

complemented. 
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Types and numbers of the 

functions 

Resultant function is 

orthodox 

Resultant function is non-

orthodox 

256 4-variable non-

orthodox functions 

256 None 

20 5-variable functions 19 1 

20 6-variable functions 17 3 

Table 11.   Results for complementation of the chosen non-orthodox functions. 

 

As in SonKarar.java’s proof, a base function f that is created by YaratNon.java 

can written as follows; 

(1) ( nnnn xxxxxSf 1211
2

,...,2,1
... −

−
∨∨∨∨








= ) , n is the number of the variables of 

the base non-orthodox function, where n is even. 

It is possible to create a non-orthodox function such that complementing it yields 

a non-orthodox function also, by doing the following steps; 

• Determine the minterms of f by using (1). 

• Form a set from all possible minterms with n-variables. Then, remove the 

ones that belong to f from this set.  

• Promote the remaining ones to (n+1)-variable minterms by appending a 1 

to their cube notations.  

• Assign a 1 to each of these newly created minterms. 

• Promote the f’s minterms to (n+1)-variable minterms by appending a 0 to 

their cube notations.  

• Assign a 1 to each of these newly created minterms. 
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Consider f, where 42433213213214321 ),,,( xxxxxxxxxxxxxxxxxf ++++=  as an 

example. f is a non-orthodox function since ( ) 5: =fMSOPτ and ( ) 4=fη . If we apply 

the above steps to f following will be the resultant function; 

.

),,,,(

5421543154325321

542543532153215321543211

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxf

++++

++++=
 

f1 is also a non-orthodox function since,  ( ) 9: 1 =fMSOPτ and ( ) 8=fη  as shown 

in Figure 33(a), if we complement f1 resultant function, 1f becomes following; 

).(

))()()()((

))()((),,,,(

5431

543253215435425321

542153215321543211

xxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxf

+++

+++++++++++++

+++++++++=

 

 1f is a non-orthodox function since, ( ) 9: 1 =fMSOPτ and ( ) 81 =fη  as shown in 

Figure  33 (b). 
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Figure 33.   (a) Karnaugh map representation of f1 (b) Karnaugh map representation of 1f . 
 

8. Conjecture 1 

It is known that the number of the non-orthodox functions grows dramatically as 

for the number of variables increases [1]. Since there are many non-orthodox functions, 

the following conjecture seems reasonable. 

The probability P(f) that an arbitrary n-variable function f and its complement are 

non-orthodox approaches 1 as n approaches infinity. 

Indeed, if Conjecture 1 is false, it is likely that approximately one-half of n-

variable functions, for large n, are orthodox and one-half are non-orthodox. This does not 

seem to be case, as experimental results by Sasao and Butler show [1]. 
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9.  Conjecture 2 

Functions can be split into two major groups; non-orthodox and orthodox 

functions. One may think about the properties of the resultant functions that obtained by 

logical operations of these non-orthodox and orthodox functions. 

As n (the number of variables) increases, the number of the functions increases 

significantly, 2 .  So, that when we increase the number of the variables, it becomes hard 

to analyze all the functions, since there are so many functions. It is better to randomly 

pick functions among the non-orthodox and orthodox functions and perform the logical 

operations by using these functions and by the help of these operations results develop 

some conjectures. 

n2

What follows are a number of conjectures that have been developed by the help of 

experimental analysis. 

Let be a non-orthodox function on variable set X, and let be any 

function on variable set Y, such that 

)(Xf )(Yg

0=∩ YX . Then )()( YgXf ∧ is a non-orthodox 

function. 

After conducting logical AND operations with 256 4-variable non-orthodox 

functions, randomly picked 25 3-variable, 25 4-variable, and 25 5-variable orthodox 

functions, the above statement observed. A java program, Espresso2.java, conducted the 

logical ANDing operations. Table 12 shows result of the AND operations between non-

orthodox and orthodox functions. 

Function Operation Function Result 

256 4-variable non-

orthodox 

AND 25 3-variable 

orthodox 

All results are non-

orthodox 

256 4-variable non-

orthodox 

AND 25 4-variable 

orthodox 

All results are non-

orthodox 

256 4-variable non-

orthodox 

AND 25 5-variable 

orthodox 

All results are non-

orthodox 

Table 12.   Results for logical AND operation between all 4-variable non-orthodox functions 
and randomly chosen orthodox functions. 
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10.         Non-orthodox Functions with 2n-variable 

Chapter 3 explains how to obtain non-orthodox functions with 2n-variables, 

where .  ∞= ,...,3,2,1n

a.  6-variable Non-orthodox Functions 
Algorithm 3 creates only one non-orthodox function for each chosen n, 

where these functions are base functions. They are called base functions since they are 

the simplest known functions for their variable sets. And, each of them can be written as 

follows. 

( ) nnnn xxxxxSf 1211
2

,...,2,1
... −

−
∨∨∨∨








= . 

Let n=3, then the function that is dealt with a 6-variable function. Figure 

25 shows a non-orthodox function that is created by Algorithm 3 for 6-variable functions. 

After the creation of the base non-orthodox function, exploration of remaining 6-variable 

non-orthodox function started. To do this, two Java programs used, namely Family.java 

and SonKarar.java as explained in “The usage of programs” part. Lack of knowledge in 

6-variable non-orthodox functions, forced the research to a brute force approach during 

the investigation process of 6-variable functions. It is known that there are 64 cells 

(minterms) in a 6-variable function’s Karnaugh map and Algorithm 3 showed that 46 of 

them are 1 as seen in Figure 25. So, Family.java used the remaining 18 minterms as don’t 

cares and created every possible 6-variable function by adding these don’t cares to the 

minterms set of the base 6-variable non-orthodox function. Then, SonKarar.java made a 

decision for each created function’s type.  

At the end of the process, two different representatives for the 6-variable 

non-orthodox functions have been found, where each of them is an incompletely 

specified function. Figure 34 shows the first representative function. It has 13 don’t cares, 

which suggests 2  completely specified functions. 819213 =

To be able to obtain a function, the reader needs to assign values to the 

dashes in Figure 34, where each dash represents a don’t care. 
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Figure 35 shows the second representative function for the 6-variable non-

orthodox functions, this representative function has 14 dashes (don’t cares), which 

suggests  completely specified functions. 16384214 =

The representative function seen in Figure 35 has the minterms 110110, 

101110 and 011010 as don’t cares, where these same minterms are 0s in the 

representative function seen in Figure 34.  
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Figure 34.   A 6-variable non-orthodox function with 13 don’t cares. 
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During the first attempt to determine the representative of the 6-variable 

non-orthodox functions, minterm 001110 was picked as a don’t care. SonKarar.java 

verified that it could be used as a don’t care. Later the process depicted in Figure 26 

repeated by using the other potential don’t care minterms. But, in the second attempt, 

minterm 001110 was kept as a 0, not a don’t care, and determining the other 6-variable 

non-orthodox functions continued with remaining potential don’t care minterms. At the 

end of the first attempt, 13 don’t cares have been determined. Thus, the number of the 

non-orthodox functions is 8192. And, at the end of the second attempt 14 don’t cares 

have been determined. Thus, the number of the non-orthodox functions is 16384. 

Now the question “Are there more representatives with different numbers 

of don’t cares?” might arise. 

 It is believed that the 16384 6-variable completely sepecified functions 

corresponding to the incompletely specified function in Figure 35 are all non-orthodox 

functions. That is Espresso produces minimal solutions that have more PIs then what is 

believed to be the number of minterms in the maximal independent set.  It is true for 

Figure 34 also.  
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Figure 35.   A 6-variable non-orthodox function with 14 don’t cares. 
 
 

b.  Simplification by Applying the Law of Distrubitivity and Without 
Applying the Distrubitivity 

The computer program that is used by Sasao and Butler [1] verified that 

the number of the PIs in the MSOPs of the 4-variable non-orthodox functions is always 1 

more than the number of the minterms in their maximal independent sets. 

This same program also verified that squaring a 4-variable non-orthodox 

function, f, by logically ANDing two copies of f and using disjoint variable sets for each 

copy, to obtain an 8-variable AND bi-decomposable function, , yields 1 more PI than 

the number of the PIs yielded by minimization of when the law of distributivity is 

applied for the minimization. 

2f
2f

 It has been observed from results of the experiments described in this 

thesis, on the contrary to 4-variable non-orthodox functions, the number of the PIs in the 
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MSOPs of 6-variable non-orthodox functions is greater than the number of the minterms 

in their maximal independent minterms sets by 2 or 1. 

Consider the question, “What is the penalty of minimizing the 12-variable 

AND decomposable functions by applying the distributivity law?” (12-variable functions 

obtained from 6-variable non-orthodox function). Unfortunately, during the minimization 

of the 12-variables functions it was not possible to use the flag –Dexact with Espresso 

because of excessive computation time. Table 13 shows the computation times of 

Espresso with or without –Dexact flag for various numbers of variables. 

During the experiments with the 12-variable functions a total of 16384 

functions are analyzed. Since, the –Dexact flag could not used for the simplification of 

the 12-variable functions, the question asked above cannot be answered precisely. 

Despite this fact, results of the experiments may give a rough idea about the range of the 

difference between ( )2: fMSOPτ

( : fMSOPτ

, minimizing the functions without breaking them into 

subfunctions, and minimizing the functions by using the law of 

distributivity. 

)2

When 6-variable non-orthodox functions are squared to obtain AND bi-

decomposable 12-variable functions, unlike 4-variable non-orthodox functions, the 

difference between the number of PIs in MSOPs that obtained by applying law of 

distributivity and the number of PIs in MSOPs that obtained from application of a 

conventional minimizing approach is not fixed to 1. But, the difference between 

( )2: fMSOPτ  (conventional approach for minimization) and ( )2: fMSOPτ (divide-and-

conquer approach for minimization) varies from 0 to 19. The worst case, 19 PIs 

difference, has been encountered 43 times during the experiments, which yields a 

percentage of 0.026%. Avarage number of the PIs in MSOPs of these 43 12-variable 

AND bi-decomposable functions were 207 that yields a percentage of 9% for the 

difference (19 PIs difference), which was 4% (1 PI) for the worst case of 8-variable AND 

bi-decomposable functions [1]. 

 

 

80 



Number of variables Minimization with –Dexact 

flag (in milliseconds) 

Minimization without        

–Dexact flag (in 

milliseconds) 

4 62 62  

5 68 67 

6 74 72 

7 73 72 

8 2948 80 

9 2072 82 

10 3397 76 

11 3998 178 

12 No result. 

(after a week run time) 

732 

 

Table 13.   Average requirement computation time for minimization with Espresso. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
Determining the properties of non-orthodox and orthodox functions and 

determining which type of functions are orthodox and which type of functions are non-

orthodox are not completed yet. In this immense research area, this thesis opens only a 

small window and tries to show the importance of the orthodox functions in logical 

design. 

From the results of this thesis, the following can be stated: 

1. Logically ANDing a non-orthodox (orthodox) function with a literal 

yields a non-orthodox (orthodox) function.  

2. Logically ORing a non-orthodox function with a literal yields a non-

orthodox function. 

3. Logically EXORing a non-orthodox function with a literal yields a non-

orthodox function. 

4. Complementing a non-orthodox function of 4 or 6-variables yields an 

orthodox function except the self-dual non-orthodox functions (from 

experimental evidence). 

5. Logically ORing two functions on disjoint sets of variables yields a non-

orthodox function if and only if one of the two functions or both of them 

non-orthodox, and yields an orthodox function if and only if both of them 

orthodox functions. 

6. Logically EXORing two functions on disjoint set of variables yields a 

non-orthodox function if and only if one or both of the two functions are 

non-orthodox, and yields an orthodox function if and only if both of them 

are orthodox functions. 

7. Logically ANDing two functions on disjoint sets of variables yields a 

non-orthodox function if and only if one or both of the two functions are 

non-orthodox, from experimental evidence. 
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8. It is shown that the counterexample that was proposed by Voight and 

Wegner [6], is closely related with Sasao and Butler’s [1] 

counterexample. So, it is the simplest known non-orthodox function. 

9. The penalty paid when one uses the law of distributivity to minimize the 

functions with AND bi-decomposition property, where each subfunction 

is non-orthodox, grows when the number of the variables of the function 

grows. (From experimental results, it can go up to 19 PIs for a 12-variable 

AND bi-decomposable function, but this result is not certain as explained 

in the “6-variable non-orthodox functions” part of Chapter V).  

10. Two representative functions are proposed. One of them has 13 don’t 

cares and the other one has 14 don’t cares. They show all 6-variable non-

orthodox functions that were discovered during the experitmental 

research in a compact form. A 6-variable non-orthodox function can be 

obtained from these representatives by assigning values to the don’t cares. 

Unfortunately, not all 6-variable non-orthodox functions were discovered. 

Also the experimental results of this thesis developed an understanding of the 

importance of orthodox functions in the minimization process of practical functions. That 

is, if a practical function can divided into two component functions (bi-decomposition 

property) and each of the components are orthodox, then minimizing the componenets 

separately and applying the law of distributivity yields MSOP for the practical function 

(the divide-and conquer algorithm). Note that this algorithm gives us an improved 

computation time with respect to conventional minimization algorithms [1].  

Determining the types of the components may help us to choose the minimization 

approach also. If either one of the component functions or both of them are non-orthodox, 

then choosing divide-and-conquer algorithm cause us to pay a penalty (more PIs in the 

MSOP expression then that needed) that tends to increase when the variable number of 

the component functions increase. Thus, excepting the cases that both of the component 

functions are orthodox, a conventional minimizing approach should be used. 
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B.  FUTURE RESEARCH RECOMMENDATIONS 

Note that this research only considers the conceptual perspective of the orthodox 

and non-orthodox functions. That is, it tries to address the question, “What are the 

properties of these functions?” rather than using the orthodox and non-orthodox functions 

in a logical design, creating a prototype of this design and testing it. 

Subsequent research may take the presented properties and apply them in a logical 

design or may create a minimization tool that applies the following minimization 

algorithm (this algorithm is proposed by Sasao and Butler [1]). 

 

Algorithm 4 

1. If f has an OR bi-decomposition, then minimize the SOPs of each 

component function separately. The OR of two MSOPs gives an MSOP 

for f. 

2. If f has an AND bi-decomposition, determine the types of the component 

functions, orthodox or non-orthodox.  If both are orthodox minimize, them 

separately apply the law of distributivity to derive the MSOP for f. 

3. Otherwise, use a conventional approach to minimize f. 

Although the proposed algorithm in Chapter IV of this thesis, Algorithm 3, can be 

used to construct n-variable non-orthodox functions, where n is even, because of the large 

number of functions and their excessive computation time, this thesis focused on 4 and 6-

variable non-orthodox functions and their families to address the characterization 

problem of non-orthodox functions. A follow-on research may propose another algorithm 

that overcomes this large-number-of-functions problem by creating randomly chosen 

non-orthodox functions and continue to characterize the orthodox and non-orthodox 

functions.  
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APPENDIX A. YARATNON.JAVA 

/** 
 * Title:          YaratNon.java 
 * Description:   This program is used to create n-variable base non-orthodox  
 *   functions, where n is even. 
 *  
 * @author:   Birol ULKER 
 *  
 */ 
 
 
import java.util.StringTokenizer; 
import java.io.*; 
import java.text.*; 
import java.math.*; 
 
 public class YaratNon { 
 
  File resultFile; 
   FileWriter fw; 
  PrintWriter pw; 
  String readName; 
 
 public YaratNon() { 
     
           System.out.println("Name For The Output File :))"); 
 
      try{//I am getting the file names that contain the functions' MSOP that I 
would like to suqare 

InputStreamReader converter = new 
InputStreamReader(System.in); 

              BufferedReader in = new BufferedReader(converter); 
              readName = in.readLine(); 
 
        } 
      catch ( IOException e){} 
 
      try { 
       fw = new FileWriter(readName,true); 
       pw = new PrintWriter(fw); 
     
          }catch(Exception ex) {} 
 } 
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/* 
DATA MEMBERS 

 
*/ 

 
int n = 0; 
int w1; 
int k = 1; 
double numofMinterms; 
char[][] mMinterms; 
char essentialPIMinterms[][]; 
char nonessentialPIMinterms[][]; 
 
 

/* 
PUBLIC METHODS 

 
*/ 

 
 
  public void start () {   
 
     describeProgram (); 
    try { 
        majorMinterms(); 
    } catch (Exception ex) {} 
   
   fillArray(); 
   yazdirekrana(); 
  findEssentialPI(); 
   findNonEssentialPI(); 
  } 
 

/* 
PRIVATE  METHODS 

 
*/ 

 
  private void describeProgram(){ 
    

System.out.print("Creates the n-variable base non-orthodox function, n is even"); 
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  } 
 
 
 
  private void majorMinterms () throws Exception{ 
 
            System.out.print("# of variables for the NON-ORTHODOX function"); 
        try{ 
                        InputStreamReader converter = new InputStreamReader(System.in); 
                        BufferedReader in = new BufferedReader(converter); 
                        String text = in.readLine(); 
                        int i = NumberFormat.getInstance().parse(text).intValue(); 
                        n = i; 
                } 
              catch ( IOException e){} 
              catch (ParseException pe) {} 
     
      for (int i = n; i >= 1; i--){ 
       k = k*2; 
      }  
 } 
 
 
 
private void fillArray(){ 
  mMinterms = new char[k][n]; 

  for (int i = 0; i <= k-1; i++){ 
       if (i >= 2){ 
          int sonuc = i; 
          int sira = n-1; 
             while ( sonuc >= 2){ 
                int yaz = sonuc % 2; 
              if (yaz ==1){ 
                 mMinterms[i][sira] = '1';//out bound 
                 sonuc = sonuc / 2; 
                 sira = sira -1; 
              } 
              else{ 
                 mMinterms[i][sira] = '0'; 
                 sonuc = sonuc / 2; 
                 sira = sira -1; 
              } 
          } 
 
           if (sonuc ==1 ){ 
              mMinterms[i][sira] = (char)49; 
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              sira = sira-1; 
                for (int z = sira; z >= 0; z--){ 
                  mMinterms[i][z] = '0'; 
 
                } 
           } 
 
 
    } 
 
 
        if (i == 1){ 
           for (int j = 0; j < n-1; j++){ 
            mMinterms[i][j]='0'; 
           } 
           mMinterms[i][n-1] ='1'; 
        } 
        else if(i ==0){ 
           for (int h = 0; h <= n-1; h++){ 
            mMinterms[i][h] = '0'; 
           } 
        } 
  } 
} 
 
   
private void yazdirekrana (){ 
 
    for (int w = 0; w <=k-1; w++){ 
              for (int d = 0; d <= n-1; d++){ 
                    System.out.print(mMinterms[w][d]); 
           } 
        System.out.println(" "); 
 
   } 
 } 
 
 
 
private void findEssentialPI(){ 
   

int counter = 0; 
   int yenisayac =0; 
   int alet = (int) Math.pow(2.0, n+1); 
   essentialPIMinterms = new char [alet][n+1]; 
    for (int b =0; b <= k-1; b++){ 
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     counter = 0; 
          for (int c = 0; c <= n-1; c++){ 
 
               if (mMinterms[b][c]==('1')){ 
                counter = counter +1; 
                        } 
          } 
 
       if ( counter > 0 & counter <= (n/2)){ 
 
               for (int z =0; z <= n-1; z++){ 
                                            essentialPIMinterms[yenisayac][z] = mMinterms[b][z]; 
                                            essentialPIMinterms[yenisayac+1][z] = mMinterms[b][z]; 
                                         } 
       essentialPIMinterms[yenisayac][n] = '0'; 
       essentialPIMinterms[yenisayac+1][n] = '1'; 
       yenisayac = yenisayac + 2; 
 
       } 
 

 } 
 

yazdir2(); 
    w1 = essentialPIMinterms.length;   
 
 } 
 
 
 
private void findNonEssentialPI() { 
   

int counter = 0; 
   int yenisayac =0; 
   int alet = (int) Math.pow(2.0, n+1); 
   nonessentialPIMinterms = new char [alet][n+1]; 
     

for (int b =0; b <= k-1; b++){ 
     counter = 0; 
          for (int c = 0; c <= n-1; c++){ 
 
               if (mMinterms[b][c]==('1')){ 
 
                counter = counter +1; 
                        } 
          } 
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       if ( counter >(n/2)){ 
 
          for (int z =0; z <= n-1; z++){ 
                       nonessentialPIMinterms[yenisayac][z] = mMinterms[b][z]; 
                 } 
 
        nonessentialPIMinterms[yenisayac][n] = '1'; 
        yenisayac = yenisayac + 1; 
 
       } 
 
  } 
 
  yazdir3(); 
   
} 
 
 
private void yazdir2(){ 

int counteryazma = 0; 
pw.println(".i " + (n + 1)); 
pw.println(".o 1"); 
int alet = (int) Math.pow(2.0, n +1); 
int hey  =0; 
 
for (int w = 0; w <= alet -1; w++){// 

        counteryazma = 0; 
           for (int d = 0; d <= n; d++){ 
               if(essentialPIMinterms[w][d]== 0){ 
                 counteryazma = counteryazma + 1;             
             
               } 
            
           } 
         
          if(counteryazma != n+1){ 
             for (int k = 0; k<= n; k++){ 
                pw.print(essentialPIMinterms[w][k]); 
             } 
            pw.println(" 1"); 
          } 
    } 
  
 
 } 
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private void yazdir3(){ 
   int counteryazma1=0; 
   int alet = (int) Math.pow(2.0, n+1); 
    for (int w = 0; w <= alet -1; w++){ 
       counteryazma1=0; 
           for (int d = 0; d <= n; d++){ 
                                 if (nonessentialPIMinterms[w][d]==0){ 
                counteryazma1 = counteryazma1 +1; 
              } 
 
           } 
           if(counteryazma1 != n+1){ 
              for (int s = 0; s <= n; s++){ 
                pw.print(nonessentialPIMinterms[w][s]); 
                         } 
              pw.println(" 1"); 
           } 
 
     } 
   pw.println(".e"); 
   pw.close(); 
 } 
 
 
   
public static void main (String[] args)  { 
 
    YaratNon yaratNon = new YaratNon(); 
    yaratNon.start(); 
 } 
 
 
} 
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APPENDIX B. FAMILY.JAVA 

/** 
 * Title:          Family.java 
 * Description:   This program is used to create all possible functions from the     
 *    minterms set that consists of base functions minterms and 
 *    the minterms that are provided by user. Program substitute 1s  
 *   and 0s to the provided minterms to create all possible functions 
 *   from the minterms set. 
 * 
 *  
 * @author:   Birol ULKER 
 *  
 */ 
 
 
import java.util.StringTokenizer; 
import java.io.*; 
import java.text.*; 
import java.math.*; 
import javax.swing.*; 
import java.util.*; 
 
 
public class Family { 
    String readName; 
    String writeName; 
    String newMinterm; 
    File readFile; 
    FileReader fr; 
    BufferedReader in; 
    File resultFile; 
    FileWriter fw; 
    PrintWriter pw; 
    Vector v; 
    String line; 
    char[][] mMinterms; 
    int k = 1; 
    int n = 0; 
 
 
  public Family() { 
        
    v = new Vector(); 
     System.out.println("Which file u want to read "); 
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        try{ 
                        InputStreamReader converter = new InputStreamReader(System.in); 
                        BufferedReader in = new BufferedReader(converter); 
 
                    readName = in.readLine(); 
           } 
           catch ( IOException e){} 
 
       System.out.println("Name of the OUTPUT file: "); 
           
          try{ 
            InputStreamReader converter = new InputStreamReader(System.in); 
            BufferedReader in = new BufferedReader(converter); 
            writeName = in.readLine(); 
          } 
         catch ( IOException e){} 
 
 
  } 
 
 
public void start () { 
 
  System.out.println("Stars the program"); 
} 
 
 
 
 
 public void getMinterms(){ 
 
      do{ 
         System.out.println("enter the minterms you want to try "); 
            try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             newMinterm = in.readLine(); 
            } 
     catch ( IOException e){} 
           v.add(newMinterm); 
 
      }while ( !newMinterm.equals("end")); 
  
v.remove(v.size()-1); 
fillArray(); 
  } 
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private void fillArray(){ 
 
  n = v.size(); 
    for (int i = n; i >= 1; i--){ 
            k = k*2; 
      } 
 
  mMinterms = new char[k][n]; 
 
   for (int i = 0; i <= k-1; i++){ 
      if (i >= 2){ 
         int sonuc = i; 
         int sira = n-1; 
            while ( sonuc >= 2){ 
               int yaz = sonuc % 2; 
                  if (yaz ==1){ 

                   mMinterms[i][sira] = '1'; 
                  sonuc = sonuc / 2; 

                    sira = sira -1; 
                 } 
                 else{ 
                    mMinterms[i][sira] = '0'; 
                    sonuc = sonuc / 2; 
                    sira = sira -1; 
                 } 
            } 
 
           if (sonuc ==1 ){ 
              mMinterms[i][sira] = (char)49; 
              sira = sira-1; 
                for (int z = sira; z >= 0; z--){ 
                   mMinterms[i][z] = '0'; 
                } 
           } 
 
 
      } 
 
       if (i == 1){ 
           for (int j = 0; j < n-1; j++){ 
            mMinterms[i][j]='0'; 
           } 
           mMinterms[i][n-1] ='1'; 
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        } 
        else if(i ==0){ 
           for (int h = 0; h <= n-1; h++){ 
            mMinterms[i][h] = '0'; 
           } 
        } 
   } 
 
  startInsertnewMinterms(); 
} 
 
   
public void startInsertnewMinterms(){ 
    int counter  =0; 
    readFile = new File(readName); 
    boolean isim = true; 
 
    for (int i = 0; i <= k-1; i++){ 
       counter = counter+1; 
       StringBuffer str = new StringBuffer(writeName); 
         try { 
             fw = new FileWriter(writeName,true); 
             pw = new PrintWriter(fw); 
             fr = new FileReader(readFile); 
             in = new BufferedReader(fr); 
          }catch(Exception ex) {} 
 
              for (int k = 0; isim ; k++){ 
                     if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57 ){ 
                         int j = k-1; 
                         System.out.println(j); 
                        writeName =  str.substring(0,j+1)+counter+".es"; 
                        isim = false; 
                      } 
                } 
         isim = true; 
          try{ 
              do{ 
                 line = in.readLine(); 
                                  if ( !line .equals(".e")){ 
                          pw.println(line); 
 
                     } 
                }while (!line .equals(".e")); 
 
            }catch(Exception e){} 
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          try{ 
                in.close(); 
          }catch(Exception e){} 
 
 
        for (int j = 0; j<= n-1; j++){ 
            if (mMinterms[i][j]=='1'){ 
               pw.println(v.elementAt(j)); 
            } 
        } 
 
pw.println(".e"); 
pw.close(); 
    } 
 
} 
 
     
public static void main (String[] args){ 
 
    Family f = new Family(); 
    f.start(); 
 
     } 
 
} 
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APENDIX C. SONKARAR.JAVA 

/** 
 * Title:          SonKarar.java 
 * Description:   Determines the types of the functions, orthodox or non-orthodox,  
 *   Espresso minimizes the functions that are created by Family.java 
 *   or Carpimtablosu.java. SonKarar.java uses Espresso’s output  
 *   files for these functions as input files. 
 * 
 *    
 * @author  Birol ULKER 
 */ 
 
 
import java.util.StringTokenizer; 
import java.io.*; 
import java.text.*; 
import java.math.*; 
import javax.swing.*; 
import java.util.*; 
 
 
 
public class SonKarar { 
 
    String readName; 
    String writeName; 
    String  numFiles; 
    String  checkCharNum; 
    File readFile; 
    FileReader fr; 
    BufferedReader in; 
    File resultFile; 
    FileWriter fw; 
    PrintWriter pw; 
    int n; 
    int birol; 
 
 
  public SonKarar() { 
 
      System.out.println("how many files Do I need to check BOSS :))"); 
 
     try{ 
            InputStreamReader converter = new InputStreamReader(System.in); 
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            BufferedReader in = new BufferedReader(converter); 
 
            numFiles = in.readLine(); 
            n = Integer.valueOf( numFiles).intValue(); 
      } 
    catch ( IOException e){} 
 
        System.out.println("OK TELL ME THE NAME OF THE FILES BOSS :))"); 
 
    try{ 
            InputStreamReader converter = new InputStreamReader(System.in); 
            BufferedReader in = new BufferedReader(converter); 
            readName = in.readLine(); 
 
      } 
    catch ( IOException e){} 
 
 
        System.out.println("RESULT FILE NAME BOSS :))"); 
 
    try{ 
            InputStreamReader converter = new InputStreamReader(System.in); 
            BufferedReader in = new BufferedReader(converter); 
            writeName = in.readLine(); 
 
      } 
    catch ( IOException e){} 
 
System.out.println("WHICH CHAR SHOULD BE CHECKED BUS :))"); 
 
       try{ 
            InputStreamReader converter = new InputStreamReader(System.in); 
            BufferedReader in = new BufferedReader(converter); 
           checkCharNum = in.readLine(); 
           birol = Integer.valueOf( checkCharNum).intValue(); 
      } 
    catch ( IOException e){} 
 
 
} 
 
 
 
    public void start(){ 
 
     int counter  =0; 
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      try { 
      fw = new FileWriter(writeName,true); 
      pw = new PrintWriter(fw); 
      }catch(Exception ex) {} 
     boolean isim = true; 
 
            for (int i = 0; i <= n-1 ; i++){ 
                      counter = counter+1; 
                      StringBuffer str = new StringBuffer(readName); 
 
                      try { 
                                    fr = new FileReader(readName);//okuma icin 
                           in = new BufferedReader(fr);//okuma icin 
                      }catch(Exception ex) {} 
 
 
 
                         for (int k = 0; isim ; k++){ 
                                if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57 ){ 
                                    int j = k-1; 
                                    System.out.println(j); 
                                    readName =  str.substring(0,j+1)+counter+".out"; 
                                    isim = false; 
                                } 
                           } 
 
            isim = true; 
 
 
                String line; 
                int sayac = 0; 
                          try{ 
                           while((line = in.readLine()) != null){ 
                                 if (line.length() > birol){ 
                                      if (line.charAt(birol)== '1'){ 
                                            sayac = sayac +1; 
                                      } 
                                  } 
 
                          } 
 
                     }catch(Exception e){} 
 
 
             if (sayac > 1){ 
                   pw.println("NON-ORTHODOX "); 
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              } 
            else{ 
                   pw.println("ORTHODOX FUNCTION !! ORTHODOX FUNCTION !! 
ORTHODOX FUNCTION !!"); 
              } 
          } 
          pw.close(); 
 
 
} 
 
 
 
public static void main (String[] args){ 
 
   SonKarar sonKarar = new SonKarar(); 
    sonKarar.start(); 
 
  } 
 
} 
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APPENDIX D. CARPIMTABLOSU.JAVA 

/** 
 * Title:          CarpimTablosu.java 
 * Description:   This program creates f 2. Logically AND the given n-variable  
 *   with itself as follows; 
 *   f 2= f(X)f(Y), where X∩Y=0  
 *  
 * @author  Birol ULKER 
 */ 
 
 
import java.util.StringTokenizer; 
import java.io.*; 
import java.text.*; 
import java.math.*; 
import javax.swing.*; 
import java.util.*; 
 
 
public class CarpimTablosu { 
     

String readName; 
     String inPutNum; 
     String writeName; 
     String  numFiles; 
     String line; 
    File readFile; 
     FileReader fr; 
     BufferedReader in; 
     File resultFile; 
     FileWriter fw; 
     PrintWriter pw; 
     int n; 
     Vector v; 
 
  public CarpimTablosu() { 
 
        System.out.println("how many functions  Do I need to MULTIPLY BOSS :))"); 
 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             numFiles = in.readLine(); 
             n = Integer.valueOf( numFiles).intValue(); 
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       } 
     catch ( IOException e){} 
 
 
 
         System.out.println(".i for new files :))"); 
 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             inPutNum = in.readLine(); 
 
       } 
        catch ( IOException e){} 
 
      System.out.println("OK TELL ME THE FUNCTIONS YOU WANT TO SQUARE 
BOSS :))"); 
 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             readName = in.readLine(); 
       } 
     catch ( IOException e){} 
 
  System.out.println("RESULT FILE NAME BOSS :))"); 
         try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
            writeName = in.readLine(); 
 
       } 
     catch ( IOException e){} 
} 
 
 
 
    public void start(){ 
 
    int counter1  =0; 
     int counter2  =0; 
     boolean isim1 = true; 
     boolean isim2 = true; 
     boolean isim3 = true; 
 
            for (int i = 0; i <= n-1 ; i++){ 
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                      counter1 = counter1+1; 
                     counter2 = counter2+1; 
                      StringBuffer str1 = new StringBuffer(readName); 
                      StringBuffer str2 = new StringBuffer(writeName); 
                      v = new Vector(); 
                     try { 
                          fr = new FileReader(readName);//okuma icin 
                          in = new BufferedReader(fr);//okuma icin 
                     }catch(Exception ex) {} 
 
                    try { 
                        fw = new FileWriter(writeName,true); 
                        pw = new PrintWriter(fw); 
                    }catch(Exception ex) {} 
 
 
                      for (int z = 0; isim1 ; z++){  
                                if ((int)str1.charAt(z)>=48 && (int)str1.charAt(z)<= 57 ){ 
                                    int j = z-1; 
                                    System.out.println(j); 
                                    readName =  str1.substring(0,j+1)+counter1+".es"; 
                                    isim1 = false; 
                                } 
                       } 
 
        isim1 = true; 
                       for (int k = 0; isim2 ; k++){  
                                if ((int)str2.charAt(k)>=48 && (int)str2.charAt(k)<= 57 ){ 
                                    int h = k-1; 
                                    System.out.println(h); 
                                     writeName =  str2.substring(0,h+1)+counter2+".es"; 
                                     isim2 = false; 
                                } 
                           } 
 
             isim2 = true; 
 
                try{ 
                     do{ 
                         line = in.readLine(); 
                                                if ( line.charAt(0)!='.'){ 
                                  StringBuffer str3 = new StringBuffer(line); 
                               for (int f = 0; isim3 ; f++){ 
                                       if ((int)str3.charAt(f)== 32 ){ 
                                              int u = f-1; 
                                                                    line =  str3.substring(0,u+1); 
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                                               isim3 = false; 
                                       } 
                              } 
 
                              isim3 = true; 
                                  v.add(line); 
 
                            } 
                    }while (!line .equals(".e")); 
 
             }catch(Exception e){} 
 
            try{ 
                in.close(); 
            }catch(Exception e){} 
 
     pw.println(".i"+" "+inPutNum); 
     pw.println(".o 1");       
      pw.println(".e"); 
      pw.close(); 
 
  } 
 
} 
 
 
 
 
      public static void main (String[] args){ 
 
         CarpimTablosu carpimTablosu = new CarpimTablosu(); 
         carpimTablosu.start(); 
      } 
 
} 
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APPENDIX E. COMPARE.JAVA 

/** 
 * Title:          Compare.java 
 * Description:   This program used to determine the penalty we need to  
 *   pay when we minimize the functions by applying law 
 *   of distributivity.  Decomposable functions obtained from 
 *   outputs of CarpimTablosu.java. Espresso used to minimize 
 *   both the subunctions of the decomposable function and  
 *   decomposable function itself. Compare.java compares   
 *   the results and finds the differnee between ( )2: fMSOPτ and   
 *   ( )2: fMSOPτ . 
 * @author  Birol ULKER 
 */ 
 
 
import java.util.StringTokenizer; 
import java.io.*; 
import java.text.*; 
import java.math.*; 
import javax.swing.*; 
import java.util.*; 
 
 
public class Compare { 
 
    String readName2; 
    String readName; 
    String writeName; 
    String writeName2; 
    String  numFiles; 
    File readFile; 
    FileReader fr; 
    BufferedReader in; 
    File resultFile; 
    FileWriter fw; 
    PrintWriter pw; 
    int n; 
    int org; 
    Vector v1; 
    Vector vOrg; 
    int birol; 
    String  checkCharNum; 
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 public Compare() { 
        System.out.println("how many files Do I need to check BOSS :))"); 
 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             numFiles = in.readLine(); 
             n = Integer.valueOf( numFiles).intValue(); 
             org = Integer.valueOf( numFiles).intValue(); 
       } 
     catch ( IOException e){} 
 
        System.out.println("OK TELL ME THE NAME OF THE FILES BOSS :))"); 
 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             readName = in.readLine(); 
       } 
     catch ( IOException e){} 
 
 
 
        System.out.println("NAME OF THE FILES FOR THE ORIGINAL FUNCTIONS 
BOSS :))"); 
 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             readName2 = in.readLine(); 
       } 
     catch ( IOException e){} 
 
 
      System.out.println("FILE NAME BOSS for the squared ones  I TELL YOU NON-
ORT. OR ORT.:)) "); 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             writeName = in.readLine(); 
       } 
     catch ( IOException e){} 
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     System.out.println("RESULT FOR THE SUBTRACTION :))"); 
 
     try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             writeName2 = in.readLine(); 
       } 
     catch ( IOException e){} 
 
    System.out.println("WHICH CHAR SHOULD BE CHECKED BUS :))"); 
 
        try{ 
             InputStreamReader converter = new InputStreamReader(System.in); 
             BufferedReader in = new BufferedReader(converter); 
             checkCharNum = in.readLine(); 
            birol = Integer.valueOf( checkCharNum).intValue(); 
       } 
     catch ( IOException e){} 
} 
 
       
 
 
public void start(){ 
 
    v1 = new Vector(); 
    int counter  =0; 
      try { 
      fw = new FileWriter(writeName,true); 
      pw = new PrintWriter(fw); 
      }catch(Exception ex) {} 
    boolean isim = true; 
    int x = 0; 
           for (int i = 0; i <= n-1 ; i++){ 
                    counter = counter+1; 
                    StringBuffer str = new StringBuffer(readName); 
 
                     try { 
                                                 
                          fr = new FileReader(readName); 
                          in = new BufferedReader(fr); 
                     }catch(Exception ex) {} 
 
                        for (int k = 0; isim ; k++){ 
 
                                if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57 ){ 
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int j = k-1;                                     

                                      readName =  str.substring(0,j+1)+counter+".out"; 
                                       isim = false; 
                                } 
                           } 
 
            isim = true; 
            String line; 
            String cikti; 
            int sayac = 0; 
            StringBuffer strOutPutSayisi; 
 
                    try{ 
                          while((line = in.readLine()) != null){ 
 
                                strOutPutSayisi = new StringBuffer(line); 
                                                  if (strOutPutSayisi.charAt(1) =='p'){ 

                  cikti =  
strOutPutSayisi.substring(2,strOutPutSayisi.length()); 

 
                                                      v1.add(cikti); 
 
                                                   } 
 
                                    if (line.length() > birol){ 
 
                                      if (line.charAt(birol)== '1'){ 
                                            sayac = sayac +1; 
                                      } 
                                   } 
 
                             } 
 
                    }catch(Exception e){} 
 
 
             if (sayac > 1){ 
                   pw.println("NON-ORTHODOX "); 
              } 
              else{ 
                   pw.println("ORTHODOX FUNCTION !! ORTHODOX FUNCTION !! 
ORTHODOX FUNCTION !!"); 
              } 
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          } 
          pw.close();           
         ikinciOkuma(); 
 } 
 
     
public void ikinciOkuma(){ 
 
    vOrg = new Vector(); 
    int counter  =0; 
    boolean isim = true; 
    int q = 0; 
 
    for (int i = 0; i <= org-1 ; i++){ 
 
          counter = counter+1; 
          StringBuffer str = new StringBuffer(readName2); 
 
                try { 
                           
                          fr = new FileReader(readName2); 
                          in = new BufferedReader(fr); 
                 }catch(Exception ex) {} 
 
 
 
                           for (int k = 0; isim ; k++){ 
 
                                if ((int)str.charAt(k)>=48 && (int)str.charAt(k)<= 57 ){ 
                                    int j = k-1; 
                                    readName2 =  str.substring(0,j+1)+counter+".out"; 
                                    isim = false; 
                                } 
                           } 
 
                     isim = true; 
 
 
        String line2; 
        String cikti2; 
        int sayac = 0; 
        StringBuffer strOutPutSayisi; 
 
                    try{ 
                          while((line2 = in.readLine()) != null){ 
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                                strOutPutSayisi = new StringBuffer(line2); 
                                                  if (strOutPutSayisi.charAt(1) =='p'){ 

         cikti2 =                          
strOutPutSayisi.substring(2,strOutPutSayisi.length()); 

 
                                                    vOrg.add(cikti2); 
                                                    } 
                               } 
                    }catch(Exception e){} 
 }      
     Subtraction(); 
 
    } 
 
 
    public void  Subtraction(){ 
     double result; 
       int outputv1; 
       int outputvOrg; 
             try { 
                 

fw = new FileWriter(writeName2,true); 
                 pw = new PrintWriter(fw); 
            }catch(Exception ex) {} 
 
            for (int filiz = 0; filiz < v1.size(); filiz++){ 
                   outputv1 = Integer.valueOf( v1.elementAt(filiz).toString().trim()).intValue(); 
                   outputvOrg = Integer.valueOf(   
vOrg.elementAt(filiz).toString().trim()).intValue(); 
                   double kim = Math.pow((double)outputvOrg,2.0); 
                   result =  kim-outputv1; 
                    pw.print(result); 
                    pw.println("   "+filiz); 
                } 
     pw.close(); 
} 
 
 
public static void main (String[] args){ 
 
   Compare compare = new Compare(); 
    compare.start(); 
    } 
 
 
} 
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APPENDIX F. ESPRESSO2.JAVA 

/** 
 * Title:       Espresso2.java    
 * Description:   This program is used to logically AND two functions 
 * @author  Birol ULKER 
 */ 
 
 
import java.util.StringTokenizer; 
import java.io.*; 
import java.text.*; 
import java.math.*; 
 
 
public class espresso2{ 
 
   File resultFile; 
   FileWriter fw; 
   PrintWriter pw; 
   InputStreamReader converter; 
   BufferedReader in; 
 
   StringTokenizer st; 
   String function; 
   String[] functionOne; 
   String[] functionTwo; 
   String[] resultFunction; 
   String[] variables; 
   int numberOfVariables; 
   int numberOfElements; 
   int[][] intVariables; 
   boolean[] boolVariables; 
   boolean append = false; 
 
   public espresso2() { 
   }  
 
 
 
    static public void main(String[] args) throws Exception 
    { 
       boolean exit = false; 
       char test; 
       espresso2 example = new espresso2(); 
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       example.InitializeStreams(); 
 
        while (!exit)       { 
           

example.GetInputs(); 
            example.ConstructResult(); 
            example.Display(); 
            example.CalculateFunctionVariables(); 
            example.CalculateFunction(); 
            System.out.println(" "); 
            System.out.print("to continue enter any character to exit enter h:"); 
           test = (char) System.in.read(); 
             if (test == 'h') { 
           
                exit = true; 
             } 
            System.in.skip(2); 
          } 
    }  
 
 
 
    public void InitializeStreams() throws Exception{ 
     
       char test; 
       converter  = new InputStreamReader(System.in); 
       in         = new BufferedReader(converter); 
 
       System.out.println("Please enter the path for the result file:"); 
       resultFile = new File(in.readLine()); 
 
       System.out.println("to append the results to the file enter 1 if not any other 
character:"); 
       test = in.readLine().charAt(0); 
        if (test == '1') { 
 
                 append = true; 
        } 
 
       fw         = new FileWriter(resultFile.getName(), true); 
       pw         = new PrintWriter(fw); 
 
 
    }  
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    public void GetInputs() throws Exception{ 
 
            numberOfElements = 0; 
 
          for (int i = 0; i < 3; i++){ 
         
              if (i == 0) { 
            
                System.out.println("Please enter the first function"); 
                function = in.readLine(); 
                st = new StringTokenizer(function, "+"); 
                numberOfElements = st.countTokens(); 
                functionOne = new String[numberOfElements]; 
 
                 for(int j = 0; j < numberOfElements; j++){ 
 
                                  functionOne[j] = st.nextToken(); 
                 } 
              } 
              else if(i == 1) { 
            
                 System.out.println("Please enter the second function"); 
                 function = in.readLine(); 
                 st = new StringTokenizer(function, "+"); 
                 numberOfElements = st.countTokens(); 
                 functionTwo = new String[numberOfElements]; 
 
                      for(int j = 0; j < numberOfElements; j++){ 
               
                           functionTwo[j] = st.nextToken(); 
                     } 
              } 
              else { 
                 System.out.println("Please enter variables (ex: xyab...)"); 
                 String text = in.readLine(); 
                 char[] temp = new char[1]; 
                 numberOfVariables = text.length(); 
                 boolVariables = new boolean[numberOfVariables]; 

                 intVariables = new int[(int)Math.pow(2.0, 
numberOfVariables)][numberOfVariables]; 

                 variables = new String[numberOfVariables]; 
 
                 for (int k = 0; k < numberOfVariables; k++){ 
 
                                  temp[0] = text.charAt(k); 
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                    variables[k] = new String(temp); 
                 } 
              } 
         } 
     }  
 
 
 
 
    public void ConstructResult(){ 
     
       numberOfElements = functionOne.length * functionTwo.length; 
       resultFunction = new String[numberOfElements]; 
       int index = 0; 
        for (int i = 0; i < functionTwo.length; i++){ 
 
                 for (int j = 0; j < functionOne.length; j++){ 
           
              resultFunction[index] = functionOne[j].concat(functionTwo[i]); 
              index++; 
                } 
        } 
    }  
 
 
    public void Display(){ 
     
       System.out.println("The multiplication of given two function is:"); 
       pw.println(" "); 
       pw.println(" "); 
       pw.println("The multiplication of given two function is:"); 
        for(int i = 0 ; i < resultFunction.length; i++){ 
        
            System.out.print(resultFunction[i]); 
            pw.print(resultFunction[i]); 
             if (i != resultFunction.length - 1) { 
                System.out.print(" + "); 
                pw.print(" + "); 
             } 
        } 
      pw.println(" "); 
    }  
 
      public void CalculateFunctionVariables(){ 
       
       int number = (int) Math.pow(2.0, numberOfVariables); 
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         int n = 0; 
 
          for (int i = 0; i < number; i++){ 
         
             n = i; 
 
               for (int j = (numberOfVariables - 1); j >= 0; j--){ 
            
                  if (n >= 0) { 
                    
                      intVariables[i][j] = n % 2; 
                  } 
 
                  n = ((n - (n % 2)) / 2); 
                } 
            } 
    }  

 

 

public void CalculateFunction() throws Exception{ 
  
       boolean[] variables = new boolean[numberOfVariables]; 
       boolean functionResult = false; 
 
       System.out.println(" "); 
       pw.println(" "); 
       System.out.println("The result is calculated as follow: "); 
       pw.println("The result is calculated as follow: "); 
        for (int p = 0; p < numberOfVariables; p++){ 
        
            System.out.print(this.variables[p] + ""); 
            pw.print(this.variables[p] + ""); 
       } 
 
       pw.println(" "); 
       pw.println(".i " + numberOfVariables); 
       pw.println(".o 1"); 
 
        for (int i = 0; i < ((int) Math.pow(2.0, numberOfVariables)); i++){ 
        
           for (int j = 0; j < numberOfVariables; j++){ 
           
               if (intVariables[i][j] == 0) { 
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               } 
               else{ 
              
                   variables[j] = true; 
               } 
            } 
 
          functionResult = Calculate(variables); 
 
            if (functionResult == true) { 
           
               System.out.println(" "); 
              pw.println(" "); 
                for (int k = 0; k < numberOfVariables; k++){ 
              
                    System.out.print(intVariables[i][k]); 
                    pw.print(intVariables[i][k]); 
                } 
               pw.print(" 1"); 
            } 
      } 
      pw.println(" "); 
      pw.println(".e"); 
      fw.close(); 
   }  
 
 
   public boolean Calculate(boolean[] booleanVariables) { 
    
      boolean result    = true; 
 
       for (int i = 0; i < resultFunction.length; i++){  
 
           boolean[] value = new boolean[(resultFunction[i].length() / 2)]; 
 
            for (int j = 0; j < (resultFunction[i].length() / 2); j++){ 
          
               result = true; 
               char[] tempTest = new char[1]; 
               tempTest[0] = resultFunction[i].charAt(2 * j); 
               String test = new String(tempTest); 
 
                if (resultFunction[i].charAt((2 * j) + 1) == '1') { 
             
                    for (int p = 0; p < variables.length; p++){ 
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                             if (test.equals(variables[p])) { 
                   
                                     value[j] = booleanVariables[p]; 
                            } 
                    } 
                } 
                else{ 
 
                              for (int p = 0; p < variables.length; p++){ 
                
                       if (test.equals(variables[p])) { 
                   
                           value[j] = !booleanVariables[p]; 
                       } 
                   } 
                } 
           } 
 
          for (int m = 0; m < value.length; m++){ 
          
             result = result & value[m]; 
          } 
 
          if (result == true) { 
          
             return true; 
          } 
       } 
      return false; 
    }  
 
}  
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